

Improving climate information services for sustainable agriculture by integrating scientific and indigenous forecasts using machine learning (ML-CLIMATE)

Spyros Paparrizos, Imme Benedict, Samuel Sutanto, Lisanne Nauta, Fulco Ludwig, Arnold Moene, MAQ* & WSG** students *Meteorology and Air Quality (MAQ) group; **Water Systems and Global Change (WSG) group, Department of Environmental Sciences

Background

Results: field study and socio-technical data integration

- Rainfed agriculture in the global South ensures world's food security.
- Small-scale farmers highly depend on short-term weather forecast.
- weather prediction

Objective

Study the **potential of machine learning** (ML) techniques to **improve climate services** using Indigenous (**IF**) and Scientific Forecast Knowledge (SF).

The **integration** of IF with SF will be performed by testing different ML techniques to **deliver a skilful Hybrid Forecast**.

The ML algorithms will be trained using the indigenous forecast indicators and scientific forecasts as predictors and the observed data as response variables.

• Our students on the ground in Ghana and Guatemala to collect IF

• Data integration and skills assessment

Interactive map of global Indigenous Forecast Knowledge

Indigenous weather forecast

Farmers have limited prior knowledge and access to forecasting scientific weather (SF).

They use indigenous forecasting techniques that are based on indicators agro-meteorological they observe in the field.

Figure. Examples of agro-meteorological indicators for weather forecasting based on meteorology, plants, astronomy, animals, etc.

Decision algorithm for Hybrid Forecast

More than **65 regions** and **1400 indicators** are used by smallholder farmers around the world to **operationally predict the weather for** farm decision-making.

Figure. Interactive map depicting regions in the world where farmers use indigenous indicators for farm decision-making, together with these indicators and associated scientific literature on the region(s) and indicator(s); example for a study case in Argentina.

Science of The Total Environment

Wageningen University & Research P.O. Box 123, 6700 AB Wageningen Contact: <u>spyros.paparrizos@wur.nl</u> T + 31 (0)317 48 72 71

https://www.wur.nl/en/project/ml-climate.htm

Review

Local rainfall forecast knowledge across the globe used for agricultural decision-making

Spyridon Paparrizos 2 🛛, Emmanuel M.N.A.N. Attoh, Samuel J. Sutanto, Nina Snoeren, Fulco Ludwig

Acknowledgements

We are thankful to WUR D3-C2 for their financial support, the University of Development Studies (UDS) in Ghana for their collaboration and our master students for their on-going field work. Most importantly, we would like to thank the smallholder farmers in Ghana and Guatemala for their participation and help with data gathering.