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Generation of Spectral–Temporal Response Surfaces
by Combining Multispectral Satellite and
Hyperspectral UAV Imagery for Precision

Agriculture Applications
Caroline M. Gevaert, Juha Suomalainen, Jing Tang, and Lammert Kooistra

Abstract—Precision agriculture requires detailed crop status
information at high spatial and temporal resolutions. Remote
sensing can provide such information, but single sensor obser-
vations are often incapable of meeting all data requirements.
Spectral–temporal response surfaces (STRSs) provide continuous
reflectance spectra at high temporal intervals. This is the first
study to combine multispectral satellite imagery (from Formosat-
2) with hyperspectral imagery acquired with an unmanned aerial
vehicle (UAV) to construct STRS. This study presents a novel
STRS methodology which uses Bayesian theory to impute missing
spectral information in the multispectral imagery and introduces
observation uncertainties into the interpolations. This new method
is compared to two earlier published methods for constructing
STRS: a direct interpolation of the original data and a direct inter-
polation along the temporal dimension after imputation along the
spectral dimension. The STRS derived through all three meth-
ods are compared to field measured reflectance spectra, leaf area
index (LAI), and canopy chlorophyll of potato plants. The results
indicate that the proposed Bayesian approach has the highest cor-
relation (r = 0.953) and lowest RMSE (0.032) to field spectral
reflectance measurements. Although the optimized soil-adjusted
vegetation index (OSAVI) obtained from all methods have similar
correlations to field data, the modified chlorophyll absorption in
reflectance index (MCARI) obtained from the Bayesian STRS out-
perform the other two methods. A correlation of 0.83 with LAI and
0.77 with canopy chlorophyll measurements are obtained, com-
pared to correlations of 0.27 and 0.09, respectively, for the directly
interpolated STRS.

Index Terms—Crop phenology, data fusion, hyperspectral
imaging, image resolution, precision agriculture.
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I. INTRODUCTION

I N THE context of threatened global food security, pre-
cision agriculture is one strategy which can maximize

yield to meet increased food demands, while minimizing the
economic and environmental costs of food production [1].
Precision agriculture requires detailed information regarding
temporal and spatial variations in crop conditions, which can be
obtained through remote sensing [1]. The specific data require-
ments depend on the intended application. For example, the
required spatial resolution could be 5–10 m for variable rate
application of fertilizer, 1–3 m for crop biomass and yield pre-
diction, and 0.5–1 m for weed control applications [2]. The
required spectral resolution also depends on the application.
Hyperspectral indices are capable of targeting reflectance at
specific wavelengths for estimating chlorophyll [3], canopy
nitrogen content [4], and carotenoids [5]. Narrowband vegeta-
tion indices obtained from hyperspectral data have been shown
to obtain higher correlations to crop leaf area index (LAI) [6]
and chlorophyll content [7] than broadband indices.

The use of satellite imagery to support agricultural applica-
tions has been recognized since the 1970s [2]. However, inad-
equate spatial and spectral resolutions as well as insufficient
revisiting frequencies have largely impaired the use of satellite
sensors for crop management [8]. Recently, some studies have
shown that hyperspectral systems can be mounted on unmanned
aerial vehicles (UAVs) [9]. The hyperspectral mapping sys-
tem (HYMSY) developed at Wageningen University under the
Smart Inspectors project [10] is one such example. Flexible
image acquisition dates and user-controlled spatial resolution
as well as flight paths are the benefits of such a system.

However, UAV image acquisition is also paired with high
operational costs [9] which may therefore limit the number of
high-resolution UAV images available. This is problematic, as
the temporal dynamics of crop surface reflectance are important
for crop monitoring and yield prediction applications [11], [12].
One solution is to supplement hyperspectral data with satellite
observations at lower spectral resolutions. This could provide
a more complete representation of the temporal dynamics of
spectral reflectance, especially during growing seasons or com-
pare relatively new hyperspectral data with historical satellite
data to improve decision-making in precision agriculture [2].

Fusing images from two different sensors may provide
datasets which exceed physical limitations of each individual
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sensor. For example, Roy et al. [13] presented the spatial
and temporal adaptive reflectance fusion model (STARFM), to
fuse Landsat and MODIS imagery which allows the user to
obtain synthetic imagery with a spatial resolution of 30 m at
a daily interval. However, this method requires the two types
of imagery at different spatial resolution to have correspond-
ing spectral bands, and can be sensitive to temporal changes
[14], [15] use unmixing-based techniques for spatial–temporal
fusion, which eliminates the corresponding-band requirements
in the STARFM method and allows for the downscaling of
additional spectral bands from medium spatial resolution sen-
sors. Similarly, Fasbender et al. [16] present a pan-sharpening
approach with a Bayesian framework which compared favor-
ably to other pan-sharpening methods. However, in the current
application, the high-resolution imagery (hyperspectral UAV)
has a higher spectral resolution than the medium-resolution
imagery (multispectral Formosat-2). The motivation of the cur-
rent study is to investigate methods which can retain valuable
hyperspectral information from the UAV imagery and use addi-
tional information from multispectral observations to obtain a
more complete temporal profile.

Two previous studies [17], [18] combined multiple sources of
imagery to create a reflectance spectrum, continuous along both
temporal and spectral domains. This creates a four-dimensional
(4-D) dataset (latitude, longitude, wavelength, date) known in
literature as a spectral–temporal response surface (STRS) [17]
or spectral–temporal analysis by response surface [18]. The
surfaces were formed by interpolating the reflectance of each
pixel along the spectral and temporal dimensions. Mello et al.
[18] utilized the polynomial trend surface (PTS) and collo-
cation surface (CS) methods to combine Landsat-7/ETM+
and Landsat-5/TM imagery to differentiate between sugarcane
harvest methods in Brazil. Villa et al. [17] focused on the devel-
opment of an STRS methodological framework. Their study
utilized a two-step interpolation technique: first interpolating
MERIS and MODIS spectra along the wavelength dimension
using a spline interpolation, and then interpolating along the
temporal dimension.

However, these two approaches have a number of limita-
tions. First, they do not account for the physical characteristics
of reflectance spectra. Therefore, the interpolated spectra may
be unrealistic, such as a missing red-edge for vegetation spec-
tra. Second, all reflectance observations are weighted equally
and the uncertainties of each measurement are not taken into
account. Third, these studies combine two sensors with similar
spectral characteristics. However, the current study combines
multispectral satellite imagery with only four spectral bands
with hyperspectral imagery (101 bands) from an UAV. The
large differences between the spectral characteristics of both
sensors make it more difficult to directly compare reflectance
measurements.

To overcome these difficulties, the current study proposes a
new methodology to obtain STRS based on Bayesian theory,
which allows the uncertainties to be quantified [19]. First, the
multispectral reflectance spectra are imputed to the hyperspec-
tral intervals based on the a priori covariance between spectral
bands of similar signatures. This causes the interpolated spec-
tra to retain the physical features characteristic of vegetation

spectra, even when combining multispectral and hyperspectral
images. Second, the temporal interpolation utilizes Bayesian
inference and takes observation uncertainties into account.

The objective of this study is to present a new method to
combine hyperspectral and multispectral imagery into STRS.
This Bayesian method is compared to two other STRS meth-
ods based on [17] and [18]. All three methods are tested for a
potato field in The Netherlands during the 2013 growing sea-
son. Extensive field measurements of crop reflectances, LAI,
and canopy chlorophyll are utilized to evaluate the quality of
the STRS results for the three methods.

II. THEORY

A. Spectral Interpolation: Bayesian Imputation

Hyperspectral observations of vegetation often present high
correlations between spectral bands [20]. The current paper
assumes that given the a priori covariance of hyperspectral
bands, a hyperspectral reflectance spectrum can be inferred
from the multispectral imagery using Bayesian imputation.

Suppose xmi
represents the surface reflectance factor at the

wavelengths of the multispectral sensor and xhi
represents the

unknown hyperspectral surface reflectance factors at date i.
These distributions are jointly Gaussian defined by (1) with the
marginal (2) and (3)
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Given the a priori mean (μm) and distribution (Σmm) of
the multispectral reflectance factors and the covariance matrix
Σhh of the hyperspectral reflectance data, the posterior condi-
tional distribution (4) can be obtained by computing the model
parameters described in (5) and (6) [19]
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The estimation x̂ij of the missing spectral value is defined as
the mean value of the posterior predictive presented in (4). It
can be calculated as follows:

x̂ij = E [xj|xmi
,θ] (7)

where θ refers to the model parameters, and xj refers to the
reflectance at wavelength j.

Although hyperspectral bands display a high covariance
between wavelengths, the nature of this covariance will vary
depending on the surface properties, i.e., fractions of bare
ground or vegetation. This implies that the covariance between
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hyperspectral and multispectral wavelengths will vary accord-
ing to different land cover types and must be calculated,
accordingly. The current implementation selects a large number
(n = 100) of hyperspectral signatures which are very similar
to the multispectral signatures which are to be imputed. These
observations are used to determine the covariance of the cor-
responding bands among two imagery sets. The selection of
priors is further discussed in Section III-C.

B. Temporal Interpolation: Bayesian Inference

After obtaining the synthetic narrow band spectra of the mul-
tispectral observations, the Bayesian inference is utilized to
interpolate along the temporal dimension to create the STRS.
The method infers a vector of true spectral reflectance factors
x from a number of noisy observations y. The mathematical
formulation is set up as a linear Gaussian system (8)

y = Ax + ε (8)

ε ∼ N
(
0,
∑

y

)
,
∑

y
= σ2

yI (9)

where A is a logical N × D matrix of the N number of obser-
vations and D is the length of the date vector which will be
interpolated. This matrix A is used to select the dates for which
images are available images. The noise is assumed to have nor-
mal Gaussian distribution (9) with a mean value of 0 and the
distribution equal to the observation noise, or sensor precision
(σ2

y) which is further multiplied by an identity matrix I . The
sensor precision is inversely related to the uncertainty and must
be estimated by the user (see Section III-D).

The vector of true reflectance factors x is also defined as a
Gaussian distribution (10). The temporal profile is assumed to
be smooth, meaning that the value of x at date j is the average
of its neighbors (11) altered by Gaussian noise (12)
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where L (13) is a second-order finite difference matrix used
to control the error term as a function of the discrepancy
between neighboring observations [19]. σx can be used to con-
trol the smoothness of the interpolation. By assigning the prior
data a higher precision than the precision of the observations
(σx > σy), the prior will have a higher weight in the interpola-
tion, resulting in a smoother profile. Conversely, by assigning
a relatively low σx (σx < σy), the temporal interpolation will
more closely follow the observed spectra [19]. The value of σx

depends on the expected variability of the spectra over time,
and may be determined empirically. Section III-D explains how
σx was obtained in the current study.

Fig. 1. Study area consisting of 24 experimental plots under four different
initial fertilization regimes over the Formosat-2 image on July 18th.

The STRS is created by interpolating the spectral reflectance
along the temporal dimension on a band-by-band basis. For
each wavelength, the hyperspectral and imputed multispectral
observations are selected, along with their corresponding uncer-
tainties. The observations of the neighboring spectral bands are
also utilized as input, but with a doubled uncertainty. In this
way, although the temporal interpolation is applied separately
for each band, the observations of neighboring bands restrain
the interpolation.

III. METHODOLOGY

A. Study Area

The study area is a potato field at 51◦19’00” N and
05◦10’14” E, near the village of Reusel in The Netherlands.
The average spectral reflectance with four levels of initial fer-
tilization from 24 experimental plots (13 × 30 m) (Fig. 1) was
obtained on a weekly basis between June 6, 2013 and August
23, 2013 (Table I). Six spectral measurements were taken per
experimental plot using a Cropscan Multispectral Radiometer
(MSR16R, Cropscan Inc.) which has 13 spectral bands in the
VIS/NIR spectrum (Table I) [4]. At the same locations, an
LAI-2000 Plant Canopy Analyzer was used to measure the
LAI of potato plants and a Minolta SPAD-502 was used to
obtain chlorophyll measurements after transforming SPAD val-
ues to chlorophyll concentrations using the relations described
by [21]. More information regarding the experimental setup can
be found in [21].

B. Image Pre-Processing

A hyperspectral system on an UAV consisting of a Specim
ImSpector V10 2/3′′ spectrograph mounted on an Aerialtronics
Altura AT8 octocopter was developed by the WU under the
Smart Inspectors project [10]. This UAV was flown over the
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TABLE I
CHARACTERISTICS OF DATASETS USED IN THE PRESENT STUDY

study area at four dates (Table I). All images were georefer-
enced, orthorectified, and atmospherically corrected using the
empirical line calibration method [21].

Eight cloud-free Formosat-2 images were available over the
study area during the 2013 growing season (Table I). The
Formosat-2 imagery was geo-referenced and co-registered to
the UAV imagery using a high-resolution aerial photograph.
All imagery was converted to reflectance factors using the
parameters in the Formosat-2 metadata files. Light and dark
pseudo-invariant pixels were identified in the entire scene by
selecting pixels with the least reflectance variation in all the
images. These pixels were used to normalize all images to the
reflectance of the June 6th Formosat-2 image. The Formosat-2
images were then clipped to the extent of the study area, and a
radiometric normalization was applied between the Formosat-
2 and UAV imagery. The UAV imagery taken between June
6th and July 17th were convolved to the Formosat-2 spectral
bands using the Formosat-2 spectral response function [22] and
radiometrically normalized.

The STRS in the current application was constructed
at experimental plot level. Therefore, the average spectral
reflectance of each experimental plot was calculated for all
UAV and Formosat-2 images. Field reflectance measurements
using the Cropscan MSR16R were also averaged for each
experimental plot.

C. Bayesian Imputation of Formosat-2 Spectra

A priori information regarding the spectra of endmembers
within the scene was obtained by creating a spectral library
listing all the UAV spectral reflectance factors in the four
available images. The study area consists of a potato field
where the endmembers within the image series range from soil
to green vegetation at various growth stages. It is assumed
that the surface spectra within the extent of the STRS are
represented within the available UAV imagery. This spectral
library was convolved using the Formosat-2 normalized spec-
tral response curve to obtain four spectral “bands” comparable
to the Formosat-2 reflectances.

For each experimental plot and each Formosat-2 image, the
100 UAV spectra with the lowest absolute difference to the
Formosat-2 spectra were selected from the convolved spectral

library. The average, standard deviation, and covariance were
calculated for each of the hyperspectral UAV bands of these
100 samples, and used as the prior for the Bayesian impu-
tation. Selecting the a priori information separately for each
experimental plot allows the imputed spectra to represent spa-
tial and temporal variation i.e., differences between plots with
low vegetation growth and a closed canopy, allowing for a more
accurate imputation.

D. Spectral–Temporal Interpolation

Three STRSs were created to illustrate the added value of
the proposed method. This first method is similar to the STRS
methods studied by [18] and will be referred to as “Direct.” It
applied a cubic-spline interpolation to the Formosat-2 and UAV
observations, thus interpolating simultaneously along spectral
and temporal dimensions. The second method, which will fur-
ther be referred to as “Two-step,” first imputed the Formosat-2
spectra along the spectral dimension (as in Section II.A.) and
then applied a spline interpolation along the temporal dimen-
sion. This is similar to [17], although they applied a spline
interpolation along the spectral dimension rather than utiliz-
ing Bayesian imputation. In the current scenario, the Bayesian
imputation is applied first, as differences in spectral characteris-
tics between the two image sources is much larger than the ones
in [17]. Third, the Bayesian STRS applied the method described
in Section II, consisting of spectral imputation followed by
temporal inference. The uncertainty of the Formosat-2 and
UAV images (σy) was defined as the RMSE between the plot
reflectances obtained from the imagery and those obtained from
the field data on June 6th and July 17th. The prior uncertainty
σx was determined empirically by maximizing the correlation
between the STRS resulting from a defined σx to the field data
on the same two dates.

One STRS using each of the three methods was created for all
24 experimental plots. The optimized soil-adjusted vegetation
index (OSAVI) (14) [24] and modified chlorophyll absorption
in reflectance index (MCARI) (15) [24] were obtained from the
STRS for all nine dates with corresponding field measurements.
OSAVI is a structural index related to LAI, whereas MCARI is
a hyperspectral index related to canopy biochemical parameters
e.g., chlorophyll. Both of these have previously shown strong
relations to yield variability [25]

OSAVI = [1.16 ∗ (ρ800 − ρ670)] / [ρ800 + ρ670 + 0.16] (14)

MCARI = [(ρ700 − ρ670)− 0.2 (ρ700 − ρ550)] ∗ [ρ700/ρ670]
(15)

The correlations between the vegetation indices obtained
from the STRSs and 1) the same vegetation index at field
level; 2) the LAI measured at field level; and 3) the canopy
chlorophyll measurements were calculated. A linear regression
was constructed between the canopy chlorophyll field measure-
ments and STRS MCARI values on corresponding dates. The
coefficients obtained through these regressions were applied to
the STRS to obtain daily canopy chlorophyll estimates.
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Fig. 2. STRS of experimental plot one created by (a) direct spectral–temporal interpolation; (b) first imputing the Formosat-2 spectra and then performing a
temporal spline interpolation; and (c) proposed Bayesian approach including sensor uncertainties.

Fig. 3. Comparison of STRS, Cropscan, and UAV spectra on different stages of crop growth period. (a) Open canopy on June 6th. (b) Closed canopy on July 17th.
(c) Closed canopy on July 31st when no UAV imagery is available.

IV. RESULTS AND DISCUSSION

The constructed STRSs were 4-D datasets providing daily
vegetation spectra with 101 bands for each experimental plot.
The STRS of experimental plot 1 using each of the three
methods are presented in Fig. 2, while the rest of the plots
obtained similar results which are not shown here. The limi-
tations of the Direct method are demonstrated in Fig. 2(a). The
last UAV image is on July 17th, whereas Formosat-2 imagery
was still available for July 22nd and August 2nd. However,
the Formosat-2 imagery only has spectral bands at 660 and
830 nm. The Direct method therefore “flattens” the spectra at
the end of July, losing the characteristic red-edge of vegetation
reflectance. This is also illustrated in Fig. 3(c).

The two-step method retains the traditional spectral charac-
teristics of vegetation [Fig. 2(b)]. However, the temporal spline
interpolation causes spectra to change rapidly in short time peri-
ods. For example, the Formosat-2 reflectance factors on July 8th
and July 18th are lower than the UAV reflectance factors on July
5th and July 17th, respectively. The sharp decrease between the
UAV and subsequent Formosat-2 observations causes the two

TABLE II
CORRELATION COEFFICIENT AND RMSE BETWEEN REFLECTANCES

OBTAINED FROM THREE STRS METHODS AND THE REFERENCE

CROPSCAN SPECTRA

N = 2808, P < 0.001 marked by *.

peaks in green reflectance (∼560 nm) at these dates. In con-
trast, the new Bayesian STRS methodology presents realistic
daily spectra with smoother temporal changes in Fig. 2(c).

The RMSE and r between the STRS and Cropscan data also
indicate that the proposed Bayesian approach performs better
than the other two methods (Table II). It is important to note
that field data acquisition methods may partly explain discrep-
ancies between STRS and Cropscan spectra. For example, on
June 6th the potato plants were not fully grown, and the canopy
was still open. The Cropscan apparatus was directed at the
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TABLE III
CORRELATION COEFFICIENT BETWEEN VEGETATION INDICES OBTAINED

FROM STRS AND FIELD MEASUREMENTS

N = 216; P < 0.001 marked by *.

Fig. 4. Temporal profiles of canopy chlorophyll content on experimental
plot one, estimated from STRS MCARI values using coefficients estimated
from a linear regression between STRS MCARI and field canopy chlorophyll
measurements on reference dates.

potato plant, whereas the UAV and Formosat-2 images con-
sist of mixed pixels and are influenced by the soil background.
This explains why the UAV spectra, and consequently the STRS
spectra are lower than the Cropscan data on this date [Fig. 3(a)].
These differences are no longer visible once the canopy has
closed [e.g. Fig. 3(b) and (c)]. This discrepancy is especially
important when using vegetation indices which are sensitive to
soil background effects, e.g., red-edge position (REP).

The correlations between the OSAVI obtained through the
STRS and the field data are similar for all three methods tested
(Table III). The Direct method provides slightly higher corre-
lations to the LAI and canopy chlorophyll than the Bayesian
STRS, which could be due to an overestimation of the sensor
uncertainties. Further research could analyze methods to esti-
mate the uncertainty of satellite measurements. However, the
MCARI obtained through the Bayesian approach has a higher
correlation to LAI and canopy chlorophyll than the other two
methods. This is likely due to the fact that the wavelengths
which are utilized in the vegetation indices. The OSAVI is
based on surface reflectance at 670 and 800 nm, which fall
within the range of Formosat-2 spectral bands. The MCARI,
however, utilizes surface reflectance data at 700 nm, which is
not present in Formosat-2 imagery. It is therefore highly depen-
dent on the interpolation method used. This is also evident in
Fig. 4, which indicates that the Bayesian STRS method more

accurately captures the crop phenological status represented by
the canopy chlorophyll content based on the MCARI.

V. CONCLUSION

This paper presents a new approach to construct a 4-D
STRS, which contains continuous surface reflectance data
along both spectral and temporal dimensions. The Bayesian
STRS approach obtained a lower RMSE (0.032) and higher
correlation (0.953) to spectral measurements at field levels than
two alternative STRS methods based on previous studies [17],
[18]. The new method also has a considerably more accurate
estimation of MCARI, a vegetation index based on wavelengths
outside the extent of Formosat-2 imagery. These findings are
very important for future STRS applications, as it indicates that
constructing an STRS based on the proposed Bayesian method
can accurately interpolate a limited number of hyperspectral
measurements to daily observations during an entire growing
season. Future applications of STRS should consider that the
increased precision of narrowband indices obtained from the
STRS should compensate for the additional uncertainty induced
by spectral–temporal interpolation techniques when compared
to direct broadband observations—as is the case with canopy
chlorophyll in the current study.

This study demonstrates the possibility of accurately com-
bining multispectral and hyperspectral data, along both spectral
and temporal dimensions through a Bayesian approach to
STRS. Future studies could combine additional sensors, pro-
viding surface reflectance data at the spectral and temporal
intervals defined by the user. In applications such as preci-
sion farming, it could help bridge the gap between sensor
capabilities and data requirements.
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