Agent-based simulation of competing business models for a sustainable meat supply chain

Eva van den Broek and Tim Verwaart

Introduction

Dutch pork supply chain

- Consumer demand for organic meat remains low
- Profits in primary sector are dwindling
 - Short term markets
 - Sustainability investments only pay off later
 - Fierce price competition (no brands)
- Therefore few investments in organic production

Research questions

Which business models could increase sustainable production of meat?

- Intrinsically dynamic dependencies between farmers / market / consumers
- Role of consumers and ngos

Compare plausible scenarios

- speed of sustainability uptake
- producer welfare (defaults / capital)

Method

- Agent based model
 - Based on stakeholder interviews/workshops in The Netherlands
 - Based on successful transitions in horticulture/ veal industry / coffee / soy markets
- Two pathways (Reinders et al., 2014):
 - increasing brand differentiation and transparency for consumers
 - cost reduction through chain internalization of external costs

Background literature

- Interaction between consumer demand, social norms and market dynamics
 - Supply chain ABM (see Mizgier ea 2012)
 - Pork cycle and bullwhip effects (Moyaux ea 2006; Lacagnina ea 2010)
 - Opinion dynamics (Deffuant ea 2010)

The model - actors

 Willingness-To-Pay (premium) is determined by sustainability preference, norm sensitivity, opinion dynamics and budget

Optimize turnover given demand for sustainability; may form long term contracts

Deliver either certified or noncertified batches; invest in certification depending on demand, capital and risk aversion

NGO broadcasts sustainability information with a certain strength and tenor

The model - actors

Agents move along a sustainability spectrum

0 —

Interface in netlogo

The model - typology

Consumers

- Conservative
- Caring
- Balanced
- Engaged
- Openminded
 (Hessing-Couvret ea 2002)

Producers

- Traditional
 - Economical
 - Balanced
 - Professional
 - Openminded(De Lauwere2002)

Differ in openness budget/capital norm sensitivity

risk aversion

The model – time step

Business models

Baseline

Differentiation Green Track Market platform

Producers' organisation

No coordination; only regular and organic meat products

10 brands, differ in sustainability level

Example: the Netherlands)

1 brand with 10-99% of organic meat given WTP of consumers

Example: soy market

Builds on Differentiation , with supply forecasts to producers

Example: horticulture

Long term contracts between brand and producer with fixed premium.

Example: German poultry

Results

Demand

Unsatisfied demand

Certified producers

Producers' capital

Producers' defaults

Simulation results

The Producers' Organization scenario:

- results in great wealth for the few members;
- reduces competition opportunities for the others;
- inferior sustainability compared to other scenarios

Only the Market Platform can prevent financial trouble

Product Differentiation results in

- rapid and substantial sustainability uptake
- financial trouble for many producers when not combined with the Market Platform

When applied in moderation, Green Track can further enhance both sustainability and producers' welfare

Conclusion

- With this model we show the potential of agent-based simulations for policy support
 - Explore scenarios for intervention in complex social or economic systems with heterogeneous actors
 - Experiment with different assumptions about the properties of the system and the agents
 - Discover unintended and unexpected effects

Discussion

- Simplified supply chain structure is used
 - in reality, supply chain partners (meat industry, slaughterhouses, retail) interact
- Future work: extensive sensitivity analysis
- Agent-based simulation requires detailed data
 - experts or stakeholders must make assumptions

Extensions

- Implement a serious game
- Participants could study effect of
 - Specific policy interventions
 - Individual decisions and strategies
 - The interplay between the above

Questions?

Tim.Verwaart@wur.nl / E.vandenbroek@wur.nl

Results - Comparing scenarios

Scenario	Sustain -ability	Consumer uptake	Producer defaults	Average revenue
Baseline	3-4	Elite	Highest	Low
Differen- tiation	2	Broad	High	Moderate
Green Track	3-4	Elite	High	Moderate
Market platform	1	Broad	Low	High
Producers' organisation	5	Elite	none	Highest