
T-vector manual

Author: Arnaud Temme, November 2010

Introduction

The T-vector calculation utility was written as part of a research project of the department of Land Dynamics at

Wageningen University – the PhD research of Wim Viveen. Code was provided by Arnaud Temme, as part of the

LAPSUS modeling framework. The utility and the code are available through the department’s website under

the condition that the relevant papers by Viveen are cited. These papers are in preparation at the moment that

this text is written, but please consult with the authors about their availability.

Calculation of T-vectors was first proposed by Cox (1994), who defined the T-vector as a measure of transverse

topographic basin symmetry. The T-vector, originally called drainage-basin asymmetry vector, is scaled

between values of 0 (complete symmetry) and 1 (complete asymmetry). The T-vector method has great

potential to help decyphering block tilt directions. The method is not widely used however as the T-vectors

cannot be automatically calculated in GIS packages. The vectors require step-by-step manual calculation and

drawing. For this reason we have developed a method that speeds up the calculation of the T-vectors.

Fig. 1: A map explaining T-vector calculation, adapted from Cox (1994, GSA Bulletin 106, p. 571-581). The drainage

midline is exactly in between the drainage divides. The position of the actual drainage pattern relative to drainage

divide and midline is calculated for segments along the actual drainage pattern (in this picture: 2 km segments). For each

segment, a T-value and a T-direction (together, the T-vector) are calculated.

Overview

The model performs a number of steps:

Fig. 2: T-vector utility overview

Each of these steps is explained below.

Reading inputs and reserving memory

The user interface requires four inputs.

First, a Digital Elevation Model (DEM) must be chosen. Although

DEMs do not need to be sink-free, we advise to check for spurious

elements in input-data to prevent model instability. Ideally, DEMs

are supplied in non-integer format (i.e. with decimal values). The

utility will give a warning when this is not the case, but will proceed

either way. DEMs must be supplied in .asc format.

Second, a watershed grid must be supplied. The watershed grid

must have integer values (whole numbers), numbered from 0.

Missing values are not a problem (for instance when a watershed

grid contains watersheds 0-15, 19-28). Although the model will try

to calculate T-vectors for incomplete catchments, it only makes

sense to include complete catchments surrounded with nodata

values (-9999).

Third, in order to reserve the proper amount of memory before running, the model requires you to tell it the

highest number that a watershed has. It is okay but useless to fill in a higher number, although the model will

then use more memory. It is also okay to fill in a lower number, but some of your watersheds will then be

ignored. Note that if your watershed grid defines watersheds numbered from 0 to 15 and from 19 to 28, this

number should be 28.

Fourth, the model calculates T-vectors for segments of the actual drainage pattern in each watershed. The

length of these segments must be defined in metres. The model is limited to a maximum of 100 segments per

watershed, so very low values for length are not okay.

Reading

inputs and
reserving
memory

Calculating

midlines

Interpolating

midlines

Calculating

drainage
lines

Interpolating

drainage
lines

Calculating T-

vectors

Writing

outputs

Fig. 3: interface of the T-vector utility,

showing input and output choices.

Calculating midlines

The model calculates midlines in a number of steps:

Fig. 4: overview of midline calculation

First, it finds the lowest cell for a watershed by simply checking all cells in the grid. Then, it finds the cell from

the same watershed that is furthest from this lowest cell. This seems the most objective and effective method

(because the highest cell in the watershed may well be not a good choice). It is conceivable that the user

defines this optimal starting point for the watershed, but the present model version does not incorporate this.

Knowing both beginning and end of the watershed, the model draws a straight line between them (called

stepline). In cases where this straight line is not inside the watershed (imagine a banana-shaped watershed),

the line is pushed sideways to cover the edge of the watershed (the line is then called sidestepline).

Walking an imaginary path along this line, the model then looks perpendicular to stepline in both directions

from sidestepline to find the watershed boundaries (these lines are called looklines). For banana-shaped

watersheds, one of these distances may be zero because sidestepline covers the watershed boundary.

Finally, halfway points are calculated from this pair of distances and the halfway points together are called

midline.

Interpolating midlines

It is entirely possible that the halfway points forming the original midline do not form a continuous line, for

instance when, at some point along stepline, a watershed becomes much wider on one side. This may become a

problem later in the calculation of T-vectors. To counter this problem, the model starts at the lowest point in a

watershed (by definition part of midline), and iteratively tries to find neighbours that are also part of midline. If

no direct neighbours are part of midline, it finds the first non-direct neighbour that is part of midline and makes

the cells along the way also part of midline.

Calculating drainage lines

Starting from the cell furthest from the outlet for a given watershed, the lowest lower neighbour is iteratively

selected to become part of the drainage line. This way, the model walks down a watershed in steepest-descent

fashion, to arrive at the outlet (the lowest cell).

When no lower neighbour is found, the model looks beyond the direct neighbours until it finds a lower

neighbour and continues there. Note that it is still a good idea to check your data for spurious pits and sinks to

prevent model instability issues.

Interpolating drainage lines

This occurs in exactly the same manner as for the midlines and ensures that the drainage lines are continuous,

even when sinks have been found.

Find lowest cell

for a watershed

Find cell

furthest from
lowest cell

Draw line

between them

Push line to

watershed edge
when it is
outside

Perpendicular

to line, find
distance to both

edges of
watershed

Calculate

halfway points

Calculating T-vectors

In the final calculation step, the model finds the first point on drainage line that is at least as far from the outlet

of a given watershed as segment length indicates.

Fig. 5: Overview of T-vector calculation

 It then calculates the direction between these two points. Halfway between them, it looks sideways (T-

lookline), perpendicular to this direction, and records distances to midline (Da) and drainage divide (Dd). The

division of these two (T = Da/Dd) then yields the value of T-vector. The direction of T-vector is perpendicular to

the line between the two points.

The model continues iteratively, starting from the previous high point, until it reaches the point furthest from

the outlet.

Writing outputs

The model has a standard output containing T-vector information and a number of optional .asc output maps.

The T-vector output file is called vectors.asc and can be used as input to GIS software. It contains the following

information:

1. Watershed number

2. Vector number (cumulative over all watersheds)

3. The row of the cell halfway the segment where the vector is based

4. The col of the cell halfway the segment where the vector is based

5. The size of the vector (T = Da/Dd) – should be always between 0 and 1

6. The Da-value of the vector (in grid cells)

7. The Dd-value of the vector (in grid cells)

8. The direction of the vector in tangent-notation (mathematic).

9. The direction of the vector in degrees (geographic)

Find next point

along drainage line
at segment length

Calculate direction

between previous
and next point

Halfway between

the two, look
perpendicular in
both directions

Record distance to

midline (Da) and
drainage divide (Dd)

Calculate T = Da/Dd,

with direction

Fig. 6: Example T-vector output data

 The model presents a number of additional output options:

1. Stepline.asc contains the steplines : the straight line from outlet to furthest point in the watershed.

This output allows you to see whether it makes sense (for your case study) to use the furthest-from-

outlet rule that is built in in this utility

2. Sidestepline.asc contains the sidesteplines.

3. Lookline.asc contains the looklines (spaced five cells apart): the lines perpendicular to stepline (and

sidestepline) along which distance to both drainage divides are measured.

4. Interpol_midline.asc contains the interpolated midlines.

Fig. 7: Stepline in dark gray, sidestepline in green Fig. 8: Stepline in dark gray, looklines (displayed five cells

apart) in purple and midline in green

5. Flowline.asc contains the actual drainage line, along which segments are measured for T-vector

calculation

6. T-lookline.asc contains the T-looklines for every segment. Perpendicular to segments, used for

measuring Da and Dd.

Fig. 9: Stepline in dark gray, flowline in yellow, T-looklines

in pink. In this example, the watershed contains three

segments (segment lines not shown and not available).

This output seems to indicate that there may be a problem

with the DEM for this watershed, because flowline seems

to hit the edge of the watershed before flowing to the

outlet. Smaller segments may be of value in this

watershed.

Fig. 10: Flowline, watershed and DEM, confirming that

flowline almost hits the edge of the watershed in the

upper part before draining in the southeast.

