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Introduction 

The T-vector calculation utility was written as part of a research project of the department of Land Dynamics at 

Wageningen University – the PhD research of Wim Viveen. Code was provided by Arnaud Temme, as part of the 

LAPSUS modeling framework. The utility and the code are available through the department’s website under 

the condition that the relevant papers by Viveen are cited. These papers are in preparation at the moment that 

this text is written, but please consult with the authors about their availability. 

Calculation of T-vectors was first proposed by Cox (1994), who defined the T-vector as a measure of transverse 

topographic basin symmetry. The T-vector, originally called drainage-basin asymmetry vector, is scaled 

between values of 0 (complete symmetry) and 1 (complete asymmetry). The T-vector method has great 

potential to help decyphering block tilt directions. The method is not widely used however as the T-vectors 

cannot be automatically calculated in GIS packages. The vectors require step-by-step manual calculation and 

drawing. For this reason we have developed a method that speeds up the calculation of the T-vectors.

 

Fig. 1: A map explaining T-vector calculation, adapted from Cox (1994, GSA Bulletin 106, p. 571-581). The drainage 

midline is exactly in between the drainage divides. The position of the actual drainage pattern relative to drainage 

divide and midline is calculated for segments along the actual drainage pattern (in this picture: 2 km segments). For each 

segment, a T-value and a T-direction (together, the T-vector) are calculated.  

  



 

Overview 

The model performs a number of steps: 

 

Fig. 2: T-vector utility overview 

Each of these steps is explained below. 

Reading inputs and reserving memory 

The user interface requires four inputs.   

First, a Digital Elevation Model (DEM) must be chosen. Although 

DEMs do not need to be sink-free, we advise to check for spurious 

elements in input-data to prevent model instability. Ideally, DEMs 

are supplied in non-integer format (i.e. with decimal values). The 

utility will give a warning when this is not the case, but will proceed 

either way. DEMs must be supplied in .asc format. 

Second, a watershed grid must be supplied. The watershed grid 

must have integer values (whole numbers), numbered from 0. 

Missing values are not a problem (for instance when a watershed 

grid contains watersheds 0-15, 19-28). Although the model will try 

to calculate T-vectors for incomplete catchments, it only makes 

sense to include complete catchments surrounded with nodata 

values (-9999).   

Third, in order to reserve the proper amount of memory before running, the model requires you to tell it the 

highest number that a watershed has. It is okay but useless to fill in a higher number, although the model will 

then use more memory. It is also okay to fill in a lower number, but some of your watersheds will then be 

ignored. Note that if your watershed grid defines watersheds numbered from 0 to 15 and from 19 to 28, this 

number should be 28. 

Fourth, the model calculates T-vectors for segments of the actual drainage pattern in each watershed. The 

length of these segments must be defined in metres. The model is limited to a maximum of 100 segments per 

watershed, so very low values for length are not okay. 
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Fig. 3: interface of the T-vector utility, 

showing input and output choices. 



 

Calculating midlines 

The model calculates midlines in a number of steps: 

 

Fig. 4: overview of midline calculation 

First, it finds the lowest cell for a watershed by simply checking all cells in the grid. Then, it finds the cell from 

the same watershed that is furthest from this lowest cell. This seems the most objective and effective method 

(because the highest cell in the watershed may well be not a good choice). It is conceivable that the user 

defines this optimal starting point for the watershed, but the present model version does not incorporate this. 

Knowing both beginning and end of the watershed, the model draws a straight line between them (called 

stepline). In cases where this straight line is not inside the watershed (imagine a banana-shaped watershed), 

the line is pushed sideways to cover the edge of the watershed (the line is then called sidestepline).  

Walking an imaginary path along this line, the model then looks perpendicular to stepline in both directions 

from sidestepline to find the watershed boundaries (these lines are called looklines). For banana-shaped 

watersheds, one of these distances may be zero because sidestepline covers the watershed boundary. 

Finally, halfway points are calculated from this pair of distances and the halfway points together are called 

midline. 

Interpolating midlines 

It is entirely possible that the halfway points forming the original midline do not form a continuous line, for 

instance when, at some point along stepline, a watershed becomes much wider on one side. This may become a 

problem later in the calculation of T-vectors. To counter this problem, the model starts at the lowest point in a 

watershed (by definition part of midline), and iteratively tries to find neighbours that are also part of midline. If 

no direct neighbours are part of midline, it finds the first non-direct neighbour that is part of midline and makes 

the cells along the way also part of midline. 

Calculating drainage lines  

Starting from the cell furthest from the outlet for a given watershed, the lowest lower neighbour is iteratively 

selected to become part of the drainage line. This way, the model walks down a watershed in steepest-descent 

fashion, to arrive at the outlet (the lowest cell). 

When no lower neighbour is found, the model looks beyond the direct neighbours until it finds a lower 

neighbour and continues there. Note that it is still a good idea to check your data for spurious pits and sinks to 

prevent model instability issues. 

Interpolating drainage lines 

This occurs in exactly the same manner as for the midlines and ensures that the drainage lines are continuous, 

even when sinks have been found. 
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Calculating T-vectors 

In the final calculation step, the model finds the first point on drainage line that is at least as far from the outlet 

of a given watershed as segment length indicates.  

 

Fig. 5: Overview of T-vector calculation 

 It then calculates the direction between these two points. Halfway between them, it looks sideways (T-

lookline), perpendicular to this direction, and records distances to midline (Da) and drainage divide (Dd). The 

division of these two (T = Da/Dd) then yields the value of T-vector. The direction of T-vector is perpendicular to 

the line between the two points. 

The model continues iteratively, starting from the previous high point, until it reaches the point furthest from 

the outlet. 

Writing outputs 

The model has a standard output containing T-vector information and a number of optional .asc output maps.  

The T-vector output file is called vectors.asc and can be used as input to GIS software. It contains the following 

information:  

1. Watershed number 

2. Vector number (cumulative over all watersheds) 

3. The row of the cell halfway the segment where the vector is based 

4. The col of the cell halfway the segment where the vector is based 

5. The size of the vector (T = Da/Dd) – should be always between 0 and 1 

6. The Da-value of the vector (in grid cells) 

7. The Dd-value of the vector (in grid cells) 

8. The direction of the vector in tangent-notation (mathematic). 

9. The direction of the vector in degrees (geographic) 
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Fig. 6: Example T-vector output data 

 The model presents a number of additional output options: 

1. Stepline.asc contains the steplines : the straight line from outlet to furthest point in the watershed. 

This output allows you to see whether it makes sense (for your case study) to use the furthest-from-

outlet rule that is built in in this utility 

2. Sidestepline.asc contains the sidesteplines. 

3. Lookline.asc contains the looklines (spaced five cells apart): the lines perpendicular to stepline (and 

sidestepline) along which distance to both drainage divides are measured. 

4. Interpol_midline.asc contains the interpolated midlines. 

 

 
 

Fig. 7: Stepline in dark gray, sidestepline in green Fig. 8: Stepline in dark gray, looklines (displayed five cells 

apart) in purple and midline in green 

 

5. Flowline.asc contains the actual drainage line, along which segments are measured for T-vector 

calculation 

6. T-lookline.asc contains the T-looklines for every segment. Perpendicular to segments, used for 

measuring Da and Dd. 



 

 
Fig. 9: Stepline in dark gray, flowline in yellow, T-looklines 

in pink. In this example, the watershed contains three 

segments (segment lines not shown and not available). 

This output seems to indicate that there may be a problem 

with the DEM for this watershed, because flowline seems 

to hit the edge of the watershed before flowing to the 

outlet. Smaller segments may be of value in this 

watershed. 

 

Fig. 10: Flowline, watershed and DEM, confirming that 

flowline almost hits the edge of the watershed in the 

upper part before draining in the southeast. 

 

 


