

JRC SCIENTIFIC AND POLICY REPORTS

Report on the 2012 Proficiency Test on pyrrolizidine alkaloids in honey and hay

Vytautas Tamošiūnas Carsten Mischke Patrick P.J. Mulder Joerg Stroka

2013

Joint Research Centre Report EUR 26235 EN

European Commission DG Joint Research Centre Institute for Reference Materials and Measurements

Contact information Joerg Stroka Address: Joint Research Centre, Retieseweg 111, B-2440, Belgium E-mail: joerg.stroka@ec.europa.eu Tel.: +32 1457 1229 Fax: +32 1457 1783

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/.

JRC85378 EUR 26235 EN

ISBN 978-92-79-33877-9 (pdf)

ISSN 1831-9424 (online)

doi:10.2787/83856

Luxembourg: Publications Office of the European Union, 2013

© European Union, 2013

Reproduction is authorised provided the source is acknowledged.

Printed in Belgium

Report on the 2012 Proficiency Test on Pyrrolizidine alkaloids in honey and hay

Vytautas Tamošiūnas Carsten Mischke Patrick P.J. Mulder Joerg Stroka

Project ID: PT 2011-PA-01 PT coordinator: Vytautas Tamošiūnas

2013

Table of Contents

Ex	cecutive s	ummary	5
1	Introd	luction	5
2	Scope		6
	2.1	Confidentiality	7
3	Time f	frame	7
4	Mater	ials	7
-	4.1	Preparation	
	4.1.1	Standard solution	7
	4.1.2	Spiked honey materials	7
	4.1.3	Naturally contaminated honey material (NCH)	
	4.1.4	Naturally contaminated hay (CPM)	
	4.2	Homogeneity	8
	4.3	Stability	
_	4.4	Distribution and instructions to participants	_
5	Refer	ence values and their uncertainties	9
6	Evalua	ation of results	10
	6.1 6.2	General observations	
	6.3	Data evaluation	13
	6.3.1	z-Score evaluation	14
	6.3.2	Incorrect identification of PAs	33
	6.4	Evaluation of the questionnaire	
	6.4.1	Scope of the method	33
	6.4.2	Sample preparation	34
	6.4.3	Detection and separation	35
	6.4.4	Quantification	35
7	Conclu	usions	36
8	Ackno	wledgements	37
9	Refer	ences	38
10) Ann	exes	39
	10.1	Particle size analysis for plant material	
	10.2	Homogeneity tests	
	10.3 10.4	Stability test	
	10.5	Accompanying letter	
	10.6	Acknowledgement of receipt form	
	10.7	Questionnaire and instructions	
	10.8.1	List of analytes analysed by laboratories	
	10.8.2	LOD's LOQ's and sources of standards	63
	10.8.3	Detection parameters	67
	10.8.4	Raw results submitted by participants	74

Executive summary

The purpose of this proficiency test (PT) was to investigate current measurement capacities of laboratories for pyrrolizidine alkaloids (PAs) in honey and hay and to provide a benchmark for their performance. PAs are part of a plant's defence mechanism and some of them are hepatotoxic. They may be present in honey and milk as a result of carry-over from bees and cows foraging on PA producing plants.

The scheme consisted of two parts: determination of pyrrolizidine alkaloids in the supplied test samples and detailed reporting on the methods used. Twenty-eight laboratories from eight different countries registered for this exercise. Two laboratories did not submit any results, and two participants submitted two independent results, using two different methodologies available in their lab.

Analysis of spiked honey showed no statistical differences between the determination of a sum parameter covering all alkaloids containing a retronecinic back bone compared to the determination of individual PAs. However, a significant difference was found for the analysis of naturally contaminated materials. Determination of individual PAs led to lower results than the sum parameter determination, indicating that not all PAs present in the sample have been identified and quantified.

Laboratories were benchmarked using z-scores. z-Scores are used to make proficiency test scores comparable and are closely related to the idea of being "fit-for-purpose". z-Scores between -2 and +2 are commonly regarded as "satisfactory". Satisfactory performance has been achieved by more than half of participants indicating that the determination of PAs using current methodologies is possible for a substantial part of testing laboratories. However, there is still a considerable need for improving the proficiency of laboratories in PA determination. One of the critical points identified was the improved supply of a wider range of individual PAs with proven identity and purity.

1 Introduction

Pyrrolizidine alkaloids (PAs) are a class of secondary plant metabolites where certain class members have a hepatotoxic activity. It is thought that they are biosynthesised to defend the plant against insect and mammalian consumption [1]. It is estimated that over 6000 plant species worldwide produce at least 600 different PAs. Exposure of mammals to these compounds can result in hepatic veno-occlusive disease, liver necrosis and ultimately death. However bees and some other insects tolerate PAs and collect pollen from PA producing plants, resulting in PA contaminated honey. There is also evidence, that PA's can enter the human food chain (f.i. milk) as non-metabolised residues [1]. Chemically all PAs toxic to mammalian species are macrocyclic or acyclic mono/diesters of a common bicyclic system called necinic base. More structural diversity is created due to oxidation forming N-oxides (**Figure 1**).

The European Food Safety Authority (EFSA) published scientific opinions for PAs in feed [2] and food [3]. Significant attention has been given to honey as one source of direct exposure of humans and lists of relevant marker PAs have been established. Furthermore, EFSA concluded that validated methods are lacking [3]. Test laboratories currently use different methodological approaches ranging from determination of a single "sum parameter" to the identification and quantification of individual PAs and their N-oxides [4].

Figure 1: Structural properties of pyrrolizidine alkaloids: a) types of necinic bases, b) types of esters formed, c) oxidation of pyrrolizidine alkaloids to produce N-oxides

2 Scope

The intention of this PT was to give laboratories the possibility to obtain performance information on the method they currently use. Next to the analytical work, participants reported detailed information on their methods. This information allowed conclusions to be drawn on how currently used analytical approaches perform to determine PAs in two relevant matrices (honey and hay). The questionnaire included questions on method scopes, quantification limits and other methodological features related to the method such as reliability and simplicity. The latter two aspects are of interest identifying method features relevant for the identification of suitable methods useful for future collaborative validation studies.

The PT planning included naturally contaminated samples as well as fortified materials. The participants were requested to use the methods of analysis available in their laboratories, and report all PAs quantified. The information gathered was then used to benchmark the laboratories against the assigned values deriving from gravimetric preparation of spiked materials. Results for naturally contaminated materials were used to compare the efficiency of different analytical methods for the identification and quantification of PAs. In order to have a common basis for

comparing methods involving different ways to estimate the content of PAs (sum parameter for PAs vs. reporting individual analytes), participants were asked to calculate the total content of PAs quantified as retrorsine equivalent.

2.1 Confidentiality

Confidentiality of the participants and their results towards third parties is guaranteed by assigning random codes to participants and not disclosing their identity.

3 Time frame

The PT was announced on the JRC-IRMM website on 24 November 2011. The registration to the exercise was open until 28 February 2012. The samples have been dispatched to participants on 28 June 2012. The reporting deadline has been set to 10 August 2012, however the last results were accepted till 05 October 2012 to complete the study with the maximum number of participants possible.

4 Materials

Table 4-1: Coding of materials and abbreviations used further in the text

Label as dispatched to participants	Abbreviated in the text
PA/PT/2012/STD (standard solution)	STD
PA/PT/2012/SNH (spiked natural honey)	SNH
PA/PT/2012/SAH (spiked invert sugar)	SAH
PA/PT/2012/NCH (naturally contaminated honey)	NCH
PA/PT/2012/CPM (naturally contaminated hay)	СРМ

4.1 Preparation

4.1.1 Standard solution

Senecionine (Phytolab), seneciphylline (Phytolab) and retrorsine (Sigma) have been used as reference materials. Stock solutions in methanol-D4, containing benzoic acid) as internal standard for quantitative nuclear magnetic resonance spectrometry (qNMR) have been prepared by substitution weighing [5]. The purity of senecionine, seneciphylline and retrorsine was determined by qNMR by RIKILT Institute for Food Safety, Wageningen, NL.

A standard solution (**STD**) was prepared gravimetrically in methanol (total volume 500 ml) from the stock solutions described above. The final concentrations of analytes including total PA content in the solution and expanded uncertainties are indicated in **Tables 6-2**, **6-4**, **6-6** and **6-8**.

4.1.2 Spiked honey materials

About 4 kilograms of monofloral *Acacia* honey (**SNH**) and invert sugar syrup, which mimics some on honey properties (**SAH**), were used for the preparation of spiked samples by gravimetry. An intermediate solution containing the three PAs, which was prepared from the stock solutions described above, was added. Masses were recorded using a laboratory balance with a resolution of 0.1 g for honey. Spiking solutions were added using substitution weighing with an analytical balance having a resolution of 0.01 mg.

The invert sugar syrup was made from (60/40/0.1 Sugar/Water/Citric acid) which was stirred for 3 hours at 80 °C. Then it was cooled down and spiked with the intermediate spiking solution. After spiking, materials were mixed in a rotating drum for 48 h prior to packaging.

4.1.3 Naturally contaminated honey material (NCH)

Six different honey samples which have been found to have a similar content of PAs were blended in a rotating drum for 48 hours prior packaging to obtain sufficient bulk material for the study. The concentrations found in the starting materials were:

Retrorsine 40 – 50 μ g/kg Seneciphylline 23 - 50 μ g/kg Senecionine 20 - 35 μ g/kg Lycopsamine <LOQ (3.9 μ g/kg) – 10 μ g/kg.

4.1.4 Naturally contaminated hay (CPM)

Hay was obtained from within the institute as surplus material for the production of a certified reference material and tested for the presence of PAs. The content of PAs was below the respective limits of detection (monocrotaline, LOD=28 μ g/kg; intermedine, LOD=24 μ g/kg; lycopsamine, LOD=33 μ g/kg; trichodesmine, LOD=8 μ g/kg; retrorsine, LOD=5 μ g/kg; seneciphylline LOD=5 μ g/kg; senecionine, LOD=9 μ g/kg; senkirkine, LOD=8 μ g/kg and echimidine, LOD=12 μ g/kg).

Tansy Ragwort (*Jacobea vulgaris*) was collected locally and dried. Both materials were milled (Retsch ZM 100 using a 0.5 mm sieve) and then sieved through a 100 µm sieve to obtain a fine powder. Prior to blending particle size distribution analysis was carried out. **Annex 10.1** shows that the materials coded as 17043 (hay) and 17044 (Tansy Ragwort) had similar particle distributions and were considered compatible for blending. The final composition of the sample was 30 g Tansy Ragwort and 4970 g hay. The level of contamination with Tansy Ragwort has been chosen to be approximately twice the regulated level laid down in 2002/32/EC [6]. The materials have been blended together step-by-step diluting Tansy Ragwort with hay. The final material was mixed in a rotating drum for 48 hours.

4.2 Homogeneity

To verify homogeneity 10 units per each material were selected at random. Two independent determinations per unit were performed using an LC-MS/MS based method, which has been single-laboratory validated at IRMM showing a fit-for-purpose repeatability. The measurement batch order was randomised. Sufficient homogeneity was assumed if the between-sample variance (s_s) was smaller than a critical factor ($0.3\sigma_p$) [7].

The between-sample variance (s_s) and the within-sample variance (s_w) were obtained from one-way analysis of variance (ANOVA). The allowable variance was calculated as $0.3\sigma_p$ (target standard deviation) from the Horwitz equation modified by Thompson [8].

Annex 10.2 lists the details of the homogeneity tests for all the materials. For all materials the between-sample variance (s_s) was smaller than the critical factor ($0.3\sigma_p$) and, therefore, sufficient homogeneity was concluded.

4.3 Stability

The stability of PAs in some matrices has been demonstrated in literature [9]. However, an isochronous stability testing was started upon sample dispatch. The samples were kept at three different temperatures ($-20^{\circ}C$; $+4^{\circ}C$ and room temperature) for a period of 12 weeks. Every fourth week a sample was moved to reference conditions ($-70^{\circ}C$). At the end of the stability testing period samples were analysed at once, making two independent determinations per sample. The concentrations found were plotted as a function of storage time. Samples were considered sufficiently stable if the slope of the regression function was not significantly different

from zero. Most samples were found to be stable with the exception of seneciphyline and retrorsine.

Seneciphyline showed some signs of instability in standard solution at room temperature and at $+4^{\circ}$ C, the drop in concentration observed was 5.6 % over 12 weeks and 2.0% within 8 weeks.

Retrorsine was apparently instable in naturally contaminated hay at +4 °C over a period of 12 weeks, while it was found to be stable for that period at -20 °C and at room temperature (RT), see **Table 10-9**. The decay for 12 weeks was 4.7%. The instability at +4 °C seems to be inconclusive as the material was stable at RT. The material was however found to be stable for a period of 8 weeks, which was the period in which results were requested. The details of the stability test can be found in **Annex 10.3**.

4.4 Distribution and instructions to participants

All samples were packed in cardboard boxes and sent to the participant via DHL express mail. One set of material was sent to every participant. The test materials were dispatched to the participants by IRMM on 28 June 2012. The samples were mostly received within 24 hours after dispatch.

Each participant received:

- a) four packages containing approximately 50 g of test materials, and an ampoule containing 4 ml of test solution containing senecionine, seneciphylline and retrorsine in methanol
- b) a accompanying letter with laboratory code, instructions on sample handling, and reporting **Annex 10.5**
- c) a sample receipt form Annex 10.6
- d) a questionnaire with results reporting form Annex 10.7

The materials were shipped refrigerated $(+4^{\circ}C)$; storage upon arrival was required to be at $+4^{\circ}C$ until the analysis was performed.

5 Reference values and their uncertainties

The assigned reference values and uncertainties have been calculated from the preparation data taking into account the uncertainty coming from the purity of standard materials and uncertainties related to preparation processes. Purity has been estimated using proton qNMR, analysing three replicates for each standard material. Benzoic acid purchased from Sigma (product Nr. 06185, Lot: BCBC1484V, traceable to NIST SRM 350b) has been used as internal standard.

Combined and expanded uncertainties were calculated as summarised in Figure 2 and equations 1 and 2.

Figure 2: Schematic presentation of estimation uncertainties of assigned values

• Combined uncertainties for sum parameter:

$$u_{\sum ref(PA)} = \sqrt{\sum_{n=1}^{i} u_{ref(PA)i}^2}$$

• Expanded uncertainties:

$$U_{(PA)} = 2 \times u_{ref(PA)}$$

Explanations to the formulas and Figure 2:

 $u_{\rm nmr(BA)}$ - standard uncertainty of qNMR measurement of internal standard (benzoic acid)

 $u_{nmr(PA)}$ - standard uncertainty of qNMR measurement of pyrrolizidine alkaloid

 $u_{m(PA)}$ - standard uncertainty of substitution weighing of pyrrolizidine alkaloid

 $u_{m(BA)}$ - standard uncertainty of substitution weighing of internal standard (benzoic acid)

 $u_{m(solvD4)}$ - standard uncertainty of mass of deuterated solvent (methanol D4)

 u_{msolv} - standard uncertainty of mass of solvent for dilution

 $u_{pur(BA)}$ - standard uncertainty of internal standard purity

 $u_{pur(PA)}$ - combined uncertainty of pyrrolizidine alkaloid purity

 $u_{stock(PA)}$ - combined uncertainty of pyrrolizidine alkaloid stock solution concentration

 $u_{mstock(PA)}$ - standard uncertainty of mass of pyrrolizidine alkaloid stock solution used for dilution

 u_{bal} - combined uncertainty of calibration of different balances used

 $u_{proc1;2}$ - standard uncertainties of weighing initial material (alkaloid/stock/spiking solution, proc1) and final material solvent/matrix (proc2)

 $u_{sol(PA)}$ - combined uncertainty of pyrrolizidine alkaloid spiking/standard solution concentration

 $u_{msol(PA)}$ - standard uncertainty for mass of pyrrolizidine alkaloid solution used for spiking

 u_{mhon} - standard uncertainty for mass of matrix used for spiking

 $u_{sp(PA)}$ - combined uncertainty of spiking procedure

 $u_{ref(PA)}$ - combined uncertainty of assigned value for pyrrolizidine alkaloid

 $u_{\sum ref(PA)}$ - combined uncertainty of concentration of total pyrrolizidine alkaloids in spiked material

As major uncertainty contributors the qNMR measurement and the uncertainty of the purity of internal standard were identified. As a result the relative uncertainties for the purities of retrorsine, senecionine and seneciphylline were 1.76 %, 1.33 % and 0.58 % respectively.

The other sources of uncertainties illustrated in **Figure 2**, for gravimetric preparation contributed with less than 0.05 % to the uncertainty budget. Reference values and related expanded uncertainties are presented in **Tables 6-2**, **6-4**, **6-6** and **6-8**.

For naturally contaminated honey, robust means and standard deviations were calculated with algorithm A of ISO 13528 [7] using a MS Excel macro that was written by the Analytical Methods Committee of The Royal Society of Chemistry (AMC) [10].

6 Evaluation of results

6.1 General observations

Twenty-eight participants from different EU Member States, Switzerland and Singapore registered to participate at this exercise. Laboratories 110 and 115 did not report results. Two laboratories 106 and 118 reported results using two different analytical approaches. One was estimating a sum parameter, the other was reporting individual analytes. To make a clear

Equation 1

Equation 2

distinction further, 106a, 118a lab codes are used to indicate results reported for the "individual" analyte determination approach, and 106b, 118b to indicate the "sum parameter" determination approach. Laboratory 106a, in order to detect individual analytes, used a reduction step with Zn in the process of sample preparation. This leads to a combined parameter for each PA and its respective N-oxide. Results of participants indicate that PA N-oxides were not an issue in honey samples and standard solutions; however these compounds were present in substantial amounts in hay. To be able to compare results of the different analytical approaches, the sum of PA-base and PA-N-oxide was calculated. The results were expressed as PA-base compound (retrorsine, senecionine, or seneciphylline). The results are presented in **Tables 6-5, 6-7, 6-9**, and

Figures 14, 21, 28.

z-Scores for individual and sum parameters were only assigned for gravimetrically spiked samples.

For the naturally contaminated samples **NCH** and **CPM** 28 results were available. The robust standard deviations for these materials were rather high. This influences in an undesirable manner the uncertainties of the consensus values (f.i. robust standard deviations 45 μ g/kg for **NCH** and 3947 μ g/kg for **CPM**, vs. robust means 140 μ g/kg for **NCH** and 4352 μ g/kg for **CPM** when analysing total PA's in the samples), thereby reducing the information content of the generated z-scores. Consequently, z-scoring for naturally contaminated materials was not found appropriate.

The success rate of laboratories to estimate PAs in spiked natural honey and spiked invert sugar syrup was comparable, suggesting that laboratories analysing PAs could use the latter as a quality control material if no honey blanks are available. It must be noted, that one laboratory (111) stated having difficulties with linearity of detector response in this matrix.

All participants were asked to report results in $\mu g/kg$ for all samples analysed including the standard solution (**STD**). Nevertheless, some participants submitted their results in $\mu g/volume$ for **STD**; those were recalculated taking into account the density of the methanolic solution $d=0.7873 \text{ g/cm}^3$ (preparation temperature: 24°C). The recalculated values are presented in **Table 6-1**. The raw data reported by participants are presented in **Tables 10-51** to **10-71**.

Despite converting the incorrectly reported measurement unit for the standard solution **STD** into μ g/kg (requested reporting unit), the robust mean was nonetheless statistically different from the assigned value derived from the gravimetric preparation (1090 μ g/kg vs. 1345 μ g/kg for total PAs in the sample). It is strongly suggested that laboratories which reported values significantly different from the assigned value should perform a root cause analysis keeping in mind that the requested reporting was μ g/kg Some laboratories might have reported values as mass fraction (μ g/kg), assuming that the density of the standard solution is unity. The reason for this assumption is that the robust mean, if corrected by the density of the solution, comes very close to the assigned value.

Lab.	Units		Values R	leported		Units		Values co	nverted	
Code	Reported	Total	RETRO	SNCP	SNC	Converted	Total	RETRO	SNCP	SNC
101	µg/kg	1457	313	737	351	µg/kg	1457.00	313.00	737.00	351.00
102	µg/kg	987.37	263.57	422.9	256.8	µg/kg	987.37	263.57	422.90	256.80
103	µg/kg	850.54	186.56	418.84	211.37	µg/kg	850.54	186.56	418.84	211.37
104	µg/kg	907.9	239.4	372.5	262.7	µg/kg	907.90	239.40	372.50	262.70
105	µg/kg	44	20	15	9	µg/kg	44.00	20.00	15.00	9.00
106a	µg/kg	945	245	456	210	µg/kg	945.00	245.00	456.00	210.00
106b	µg/kg	938	SUM	SUM	SUM	µg/kg	938.00	SUM	SUM	SUM
107	µg/kg	1635.64	446.75	875	254.64	µg/kg	1635.64	446.75	875.00	254.64
108	μg/l	891	210	480	167	µg/kg	1131.72	266.73	609.68	212.12
109	µg/kg	880	229.6	391.9	226.4	µg/kg	880.00	229.60	391.90	226.40
111	µg/kg	974.1	229.6	497.6	210	µg/kg	974.10	229.60	497.60	210.00
112	µg/kg	389.89	205.53	97.52	58.38	µg/kg	389.89	205.53	97.52	58.38
113	µg/ml	1.14	SUM	SUM	SUM	µg/kg	1447.99	SUM	SUM	SUM
114	μg/l	956.09	248.38	441.37	231.45	µg/kg	1214.39	315.48	522.51	293.98
116	μg/kg	1113.08	263.33	510.83	297.17	µg/kg	1113.08	263.33	510.83	297.17
117	µg/kg	27.57	3.95	13.45	9.02	µg/kg	27.57	3.95	13.45	9.02
118a	µg/ml	1.032	0.228	0.535	0.229	µg/kg	1310.81	289.60	679.54	290.87

Table 6-1: Conversion of results for sample **STD**. Abbreviations mean: Total – total content of PA's in the sample, RETRO – retrorsine, SNCP – seneciphylline, SNC - senecionine

118b	µg/ml	0.909	SUM	SUM	SUM	µg/kg	1154.58	SUM	SUM	SUM
119	µg/kg	384.8	76.6	192.3	100.8	µg/kg	384.80	76.60	192.30	100.80
120	µg/kg	996	226	487	245	µg/kg	996.00	226.00	487.00	245.00
121	ng/ml	927	253	361	195	µg/kg	1177.44	321.35	458.53	247.68
122	µg/kg	832.2	195.1	383.1	222.6	µg/kg	832.20	195.10	383.10	222.60
123	µg/kg	2180	SUM	SUM	SUM	µg/kg	2180.00	SUM	SUM	SUM
124	µg/kg	1101.95	278.25	536.25	269.25	µg/kg	1101.95	278.25	536.25	269.25
125	μg/ml	1.6	n/a	1.41	0.08	µg/kg	2032.26	n/a	1790.93	101.61
126	µg/kg	14052.47	3626	7438.1	2460	µg/kg	14052.47	3626.00	7438.10	2460.00
127	μg/ml	0.71	<lod< td=""><td>0.47</td><td>0.21</td><td>µg/kg</td><td>901.82</td><td><lod< td=""><td>596.98</td><td>266.73</td></lod<></td></lod<>	0.47	0.21	µg/kg	901.82	<lod< td=""><td>596.98</td><td>266.73</td></lod<>	596.98	266.73
128	µg/kg	1058.01	270	516.35	232.7	µg/kg	1058.01	270.00	516.35	232.70

6.2 Scores and evaluation criteria

Individual laboratory performance was expressed in terms of z-scores in accordance with ISO 13528 [7] and the International Harmonised Protocol [11].

$$z = \frac{x_{lab} - X_{ref}}{\sigma_{p}}$$

Equation 3

where:

 $x_{\mbox{\tiny lab}}$ - result submitted by participant

X_{ref} - assigned value

 σ_{p} - target standard deviation.

 $\sigma_{\! p}$ was calculated by the Horwitz equation (equations 5,6) :

- for analyte concentrations < 120 μ g/kg

$$\sigma_n = 0.22 \cdot c$$

Equation 4

where:

c - concentration of the assigned value, expressed as a mass fraction, e.g. 1 $\mu g/kg$ = $10^{-9},$ 1 mg/kg = 10^{-6}

The z-score compares the participant's deviation from the reference value with the target standard deviation accepted for the proficiency test, σ_p . The z-score is interpreted as:

 $|z| \le 2$ satisfactory result

 $2 < |z| \le 3$ questionable result

|z| > 3 unsatisfactory result

6.3 Data evaluation

The robust mean values and robust standard deviations were computed according to Algorithm A of ISO 13528 [7] by application of a MS Excel® macro that was written by the Analytical Methods Committee of The Royal Society of Chemistry (AMC). The representative figures are tabulated for each test sample in the following sections of the report.

All results have been evaluated for individual z-Scores and for the total PA content in the samples.

6.3.1 z-Score evaluation

Sample		STD	SNH	SAH	NCH	СРМ
No. Results		28	28	28	28	25
Min	µg/kg	27.57	56.89	46.74	82.25	188.00
Max	µg/kg	14052.47	819.21	758.15	10100.00	40985.02
x _m	µg/kg	1027.01	85.66	87.27	133.45	2909.5
X _r	µg/kg	1090.04	88.70	86.13	139.84	4352.2
X _{ref}	µg/kg	1345.39	85.23	85.18	n/a	n/a
U _{ref}	µg/kg	61.43	3.89	3.88	n/a	n/a
S _{rob}	µg/kg	453.7	29.5	28.8	44.8	3947.7
σ _p	µg/kg	205.86	18.75	18.73	n/a	n/a
NR /z/>2		n/a	5	4	n/a	n/a

Table 6-2: Summary statistics for total PA determination

 x_m – median of results x_r – robust mean of results

 X_{ref} – assigned value

U_{ref} – expanded uncertainty of assigned value

 s_{rob} – robust standard deviation

 σ_p – target standard deviation

Table 6-3: Results submitted by participants for total PA determination

(The meaning of colours: green - satisfactory, yellow - questionable, red - unsatisfactory result)

				Sample	Sample					
Lab. Code	STD , μg/kg	SNH , μg/kg	z(SNH)	SAH , μg/kg	z(SAH)	NCH , μg/kg	CPM , μg/kg			
101	1457.00	70	-0.8	88	0.2	123	1624			
102	987.37	70.7	-0.8	78.54	-0.4	123.22	n/a			
103	850.54	64.64	-1.1	63.16	-1.2	95.9	2511.81			
104	907.90	98.4	0.7	95.3	0.5	154.4	3924.6			
105	44.00	95	0.5	88	0.2	165	188			
106a	945.00	103	1.0	104	1.0	96	1802			
106b	938.00	131	2.4	107	1.2	10100	19200			
107	1635.64	267.043	9.7	206.419	6.5	196.62	4081.88			
108	1131.72	73.3	-0.6	70	-0.8	107.5	3051			
109	880.00	66.8	-1.0	65.8	-1.0	118.7	4107			
111	974.10	86	0.0	54.7	-1.6	161.7	10468.4			
112	389.89	56.89	-1.5	46.74	-2.1	103.15	2909.48			
113	1447.99	108.51	1.2	95.39	0.6	2146.03	9920.48			
114	1214.39	85.31	0.0	86.54	0.1	128.33	1723.02			
116	1113.08	94.49	0.5	103.7	1.0	156.41	1635.17			
117	27.57	127.63	2.3	178.15	5.0	138.57	2028.59			
118a	1310.81	96.16	0.6	102.86	0.9	149.89	2012.16			
118b	1154.58	67.15	-1.0	69.31	-0.9	167.86	9869.53			
119	384.80	156.1	3.8	146.1	3.3	166.2	1718.1			
120	996.00	63	-1.2	74.5	-0.6	97.7	5586			
121	1177.44	64.1	-1.1	63.2	-1.2	105	n/a			
122	832.20	63.1	-1.2	58.6	-1.4	104.7	615.1			
123	2180.00	120	1.9	113	1.5	2137	10858			
124	1101.95	94.85	0.5	94.26	0.5	150.58	2085.94			
125	2032.26	60.6	-1.3	52.9	-1.7	91.8	2434.5			
126	14052.47	819.21	39.2	758.15	35.9	1340.19	40985.02			
127	901.82	64.29	-1.1	56.84	-1.5	82.25	4370.47			
128	1058.01	62.32	-1.2	65.29	-1.1	107.79	n/a			

Figure 3: Results for total PA in sample STD.

Figure 4: Results for total PA in sample **SNH**. Green line – assigned value, blue lines – uncertainty range of assigned value, red lines result acceptance range for z-score criteria

Figure 5: Results for total PA in sample **SAH**. Green line – assigned value, blue lines – uncertainty range of assigned value, red lines - result acceptance range for z-score criteria.

Figure 6: Distribution of results of total estimation of PA's submitted by participants for sample **NCH**.

Lab. Code **Figure 7:** Distribution of results of total estimation of PA's submitted by participants for sample **CPM**. Laboratories 102, 121, 128 did not analyse hay.

Laboratories 106b, 113, 118b, and 123 have been excluded from the following evaluations till chapter 6.3.2, because it concerns only laboratories analysing individual PA's.

Table 6-4: Summary statistics for retrorsine: **CPM**(NO) indicates retrorsine-N-oxide content in the hay sample. **CPM**(total) - total content of retrorsine and retrorsine-N-oxide in the hay sample, expressed as retrorsine equivalent.

Sample		STD	SNH	SAH	NCH	СРМ	CPM(NO)	CPM(total)
No. Results		22	22	22	22	18	10	18
Min	µg/kg	3.95	12.30	9.16	25.20	23.00	159.64	23.00
Max	µg/kg	3626.00	220.00	189.50	465.90	756.13	354.10	1032.29
x _m	µg/kg	254.2	21.6	21.5	44.4	125.6	304.9	303.7
Xr	µg/kg	249.2	21.3	21.2	44.5	155.0	265.5	309.5
X _{ref}	µg/kg	326.18	20.86	20.84	n/a	n/a	n/a	n/a
U _{ref}	µg/kg	11.50	0.73	0.73	n/a	n/a	n/a	n/a
S _{rob}	µg/kg	69.8	6.2	6.8	13.2	109.8	92.5	161.4
σ _p	µg/kg	61.77	4.59	4.58	n/a	n/a	n/a	n/a
NR /z/>2		n/a	2	3	n/a	n/a	n/a	n/a

x_m – median of results

x_r – robust mean of results

X_{ref} – assigned (nominal) value

U_{ref} – expanded uncertainty of assigned value

 s_{rob} – robust standard deviation

 σ_{p} – target standard deviation

Table 6-5: Results submitted by participants for retrorsine:

(The meaning of colours: green - satisfactory, yellow - questionable, red - unsatisfactory result)

					Sample						
	STD,	SNH,		SAH,		NCH,	CPM,	CPM (NO),	CPM(Total),		
Lab. Code	µg/kg	µg/kg	z(SNH)	µg/kg	z(SAH)	µg/kg	µg/kg	µg/kg	µg/kg		
101	313.00	15	-1.3	19	-0.4	45	250	n/a	250		
102	263.57	20.16	-0.2	22.61	0.4	45.36	n/a	n/a	n/a		
103	186.56	14.09	-1.5	12.93	-1.7	25.68	63.86	159.64	216.54		
104	239.40	25.7	1.1	23.6	0.6	51.9	59.2	354.1	397.88		
105	20.00	30	1.99	25	0.9	65	23	<lod< td=""><td>23</td></lod<>	23		
106a	245.00	26	1.1	26	1.1	44	316	n/a	316		
107	446.75	140.67	26.1	57.37	8.0	84.08	110.8	349.2	444.79		
108	266.73	19.1	-0.4	18.4	-0.5	32.8	133	168	293.68		
109	229.60	16.2	-1.0	16.2	-1.0	35.8	125.5	321	432.52		
111	229.60	20.0	-0.2	12.4	-1.8	57.0	121.0	324.3	431.18		
112	205.53	14.63	-1.4	9.16	-2.5	30.68	125.73	196.87	314.03		
114	315.48	23.57	0.6	21.53	0.2	42.02	160.91	n/a	160.91		
116	263.33	23.48	0.6	26.01	1.1	48.39	203.77	n/a	203.77		
117	3.95	23.04	0.5	28.81	1.7	42.26	557.46	n/a	557.46		
118a	289.60	24.76	0.9	27.98	1.6	44.36	<lod< td=""><td>n/a</td><td><lod< td=""></lod<></td></lod<>	n/a	<lod< td=""></lod<>		
119	76.60	23.4	0.6	21.4	0.1	55.8	48.8	169.8	211.21		
120	226.00	12.3	-1.9	13.4	-1.6	25.2	99.9	323.6	409.41		
121	321.35	18.8	-0.4	18.6	-0.5	37.4	n/a	n/a	n/a		
122	195.10	15.7	-1.1	17.2	-0.8	31.3	67.7	n/a	67.7		
124	278.25	25.4	1.0	24.48	0.8	47.6	251.08	n/a	251.08		
125	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
126	3626.00	220	43.4	189.5	36.8	465.9	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
127	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>756.13</td><td>288.73</td><td>1032.29</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>756.13</td><td>288.73</td><td>1032.29</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>756.13</td><td>288.73</td><td>1032.29</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>756.13</td><td>288.73</td><td>1032.29</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>756.13</td><td>288.73</td><td>1032.29</td></lod<></td></lod<>	<lod< td=""><td>756.13</td><td>288.73</td><td>1032.29</td></lod<>	756.13	288.73	1032.29		
128	270.00	17.53	-0.7	17.61	-0.7	44.5	n/a	n/a	n/a		

The results are written as reported by the laboratories. SUM* - means, that laboratory uses the method involving conversion of retrorsine-N-oxide to retrorsine prior to detection

Figure 8: Retrorsine results for sample STD. Laboratory 125 did not analyse, laboratory 127 did not detect retrorsine.

Figure 9: Retrorsine results for sample **SNH**. Laboratory 125 did not analyse, laboratory 127 did not detect retrorsine. Green line is assigned value, blue lines - expanded uncertainty of assigned value, red lines - result acceptance range for z-score criteria

Figure 10: Retrorsine results for sample **SAH**. Laboratory 125 did not analyse, laboratory 127 did not detect retrorsine. Green line is assigned value, blue lines - expanded uncertainty of assigned value, red lines - result acceptance range for z-score criteria

Figure 11: Retrorsine results for sample NCH. Laboratory 125 did not report and laboratory 127 did not detect retrorsine.

Figure 12: Retrorsine results for sample **CPM**. Laboratories 102, 121, 125, 128 did not report and laboratories 118a, 126 did not detect retrorsine. Due to the methodology used by laboratory 106a, their result is presented as total retrorsine.

Figure 13: Retrorsine-N-oxide results for sample **CPM**. Only those laboratories are indicated which reported numeric figures.

Figure 14: Total Retrorsine results for sample **CPM**. Laboratories 102, 121, 125, 128 did not analyse retrorsine in the sample.

Table 6-6: Summary statistics for seneciphylline. CPM(NO) indicates seneciphylline-N-oxide content in the hay sample. CPT(total) - total content of seneciphylline and seneciphylline-N-oxide, expressed as seneciphylline equivalent

Sample		STD	SNH	SAH	NCH	СРМ	CPM(NO)	CPM(total)
No. Results		24	24	24	24	21	14	21
Min	µg/kg	13.45	25.97	24.22	20.00	80.00	300.13	80.00
Max	µg/kg	7438.10	452.30	429.10	440.50	5096.80	8588.00	13291.40
x _m	µg/kg	492.3	41.8	39.8	33.9	484.5	798.5	932.3
Xr	µg/kg	488.3	41.4	40.1	35.0	467.6	747.8	986.3
X _{ref}	µg/kg	647.62	40.68	40.65	n/a	n/a	n/a	n/a
U _{ref}	µg/kg	7.55	0.47	0.47	n/a	n/a	n/a	n/a
S _{rob}	µg/kg	221.6	12.3	13.0	11.3	157.8	404.1	538.4
σ _p	µg/kg	110.62	8.95	8.94	n/a	n/a	n/a	n/a
NR z>2		n/a	4	4	n/a	n/a	n/a	n/a

x_m – median of results

x_r – robust mean of results

 X_{ref} – assigned (nominal) value

 U_{ref} – expanded uncertainty of assigned value

 $s_{\mbox{\scriptsize rob}}$ – robust standard deviation

 σ_p – target standard deviation

Table 6-7: Results submitted by participants for seneciphylline (The meaning of colours: green – satisfactory, yellow – questionable, red – unsatisfactory result)

	Sample									
	STD,	SNH,		SAH,		NCH,	CPM,	CPM (NO),	CPM(total),	
Lab. Code	µg/kg	µg/kg	z(SNH)	µg/kg	z(SAH)	µg/kg	µg/kg	μg/kg	µg/kg	
101	737.00	40	-0.1	46	0.6	32	483	n/a	483.00	
102	422.90	29.95	-1.2	33.92	-0.8	29.58	n/a	n/a	n/a	
103	418.84	32.25	-0.9	32.7	-0.9	27.02	318.92	505.58	801.35	
104	372.50	39.6	-0.1	39.9	-0.1	32.6	327	718.6	1012.69	
105	15.00	45	0.5	40	-0.1	38	80	<lod< td=""><td>80.00</td></lod<>	80.00	
106a	456.00	47	0.7	47	0.7	20	745	SUM*	745.00	
107	875.00	89.39	5.4	108.37	7.6	55.03	378	1069.2	1398.24	
108	609.68	43.3	0.3	39.7	-0.1	39	334	410	725.22	
109	391.90	29	-1.3	30.3	-1.2	28.2	484.5	824.5	1271.24	
111	497.60	44.0	0.4	26.0	-1.6	38.6	531.0	1214.4	1689.79	
112	97.52	25.97	-1.6	24.22	-1.8	24.46	487.21	504.86	968.95	
114	522.51	36.97	-0.4	39.26	-0.2	35.09	572.58	n/a	572.58	
116	510.83	41.89	0.1	45.95	0.6	36.03	473.32	n/a	473.32	
117	13.45	68.4	3.1	70.97	3.4	45.3	557.46	1175.47	1679.10	
118a	679.54	45.95	0.6	47.15	0.7	42.1	534.59	305	825.62	
119	192.30	100.3	6.7	90.6	5.6	54.4	336.8	789.3	1089.95	
120	487.00	33.3	-0.8	39.6	-0.1	27.4	495.8	1123	1567.37	
121	458.53	27.7	-1.5	27.2	-1.5	24.2	n/a	n/a	n/a	
122	383.10	27.5	-1.5	24.8	-1.8	24.9	162	n/a	162.00	
124	536.25	45.32	0.5	45.68	0.6	37.48	609.71	n/a	609.71	
125	1790.93	49.97	1.0	24.52	-1.8	66.68	645.95	300.13	932.34	
126	7438.10	452.3	46.0	429.1	43.4	440.5	5096.8	8588	13291.51	
127	596.98	41.74	0.1	40.57	0.0	31.6	379.13	807.73	1149.87	
178	516 25	28 75	_1 2	20.07	_1 2	20.63	n/2	n/2	n/2	

128516.3528.75-1.330.07-1.220.63n/an/aThe results are written as reported by the laboratories. SUM* - means, that laboratory uses the
method involving conversion of seneciphylline-N-oxide to seneciphylline prior to detection

Figure 15: Seneciphylline results for sample STD.

Figure 16: Senecipylline results for sample **SNH**. Green line is assigned value, blue lines - expanded uncertainty of assigned value, red lines - result acceptance range for z-score criteria

Figure 17: Seneciphylline results for sample **SAH**. Green line is assigned value, blue lines - expanded uncertainty of assigned value, red lines - result acceptance range for z-score criteria

Figure 18: Seneciphylline results for sample NCH.

Figure 19: Seneciphylline results for sample **CPM.** Laboratories 102, 121 and 128 did not report. Due to the methodology used by laboratory 106a, their result is presented as total seneciphylline.

Figure 20: Seneciphylline-N-oxide results for sample **CPM**. Results are only indicated for laboratories which reported numeric figures.

Lab. Code **Figure 21:** Total seneciphylline results for sample **CPM**. Laboratories 102, 121, 128 did not report results.

Table 6-8: Summary statistics for senecionine. **CPM**(NO) indicates senecionine-N-oxide content in the hay sample. **CPM**(total) - total content of senecionine and senecionine-N-oxide in the hay sample, expressed as senecionine equivalent

Sample		STD	SNH	SAH	NCH	СРМ	CPM(NO)	CPM(total)
No. Results		24	24	24	23	21	13	21
Min	µg/kg	9.00	1.69	0.38	20.00	80.00	300.13	80.00
Max	µg/kg	2460.00	116.20	110.60	440.50	5096.80	8588.00	13291.40
x _m	µg/kg	238.9	19.3	18.8	33.9	484.5	1496.3	1307.5
Xr	µg/kg	225.5	19.0	19.2	41.1	636.1	1369.5	1387.1
X _{ref}	µg/kg	321.28	20.52	20.51	n/a	n/a	n/a	n/a
U _{ref}	µg/kg	8.55	0.55	0.55	n/a	n/a	n/a	n/a
S _{rob}	µg/kg	86.4	6.4	7.6	12.2	394.0	841.2	951.6
σ _p	µg/kg	60.99	4.51	4.51	n/a	n/a	n/a	n/a
NR /z/>2		n/a	5	5	n/a	n/a	n/a	n/a

 x_m – median of results

 x_r – robust mean of results

 X_{ref} – assigned (nominal) value

 U_{ref} – expanded uncertainty of assigned value

 s_{rob} – robust standard deviation

 $\sigma_{\rm p}$ – target standard deviation

Table 6-9: Results submitted by participants for senecionine (The meaning of colours: green – satisfactory, yellow – questionable, red – unsatisfactory result)

					San	nple			
	STD,	SNH,		SAH,		NCH,	CPM,	CPM (NO),	CPM(total),
Lab. Code	µg/kg	µg/kg	z(SNH)	µg/kg	z(SAH)	µg/kg	µg/kg	μg/kg	μg/kg
101	351.00	12	-1.9	19	-0.3	31	825	n/a	825
102	256.80	18.11	-0.5	19.26	-0.3	44.56	n/a	n/a	n/a
103	211.37	15.94	-1.0	14.59	-1.3	30.94	464.31	970.24	1390.37
104	262.70	27.2	1.5	28.2	1.7	55.5	743.2	1678.2	2344.99
105	9.00	20	-0.1	23	0.6	50	85	<lod< td=""><td>85</td></lod<>	85
106a	210.00	26	1.2	27	1.4	30	669	SUM*	669
107	254.64	30.72	2.3	33.26	2.8	52.07	369.8	1776	2064.93
108	212.12	8.1	-2.8	9.4	-2.5	23.7	528	1440	1902.43
109	226.40	19.1	-0.3	16.8	-0.8	42	783.4	1514	2228.46
111	210.00	18.8	-0.4	12.1	-1.9	33.9	690.2	1670.1	2284.26
112	58.38	10.64	-2.2	8.91	-2.6	22.7	506.12	839.57	1307.46
114	293.38	21.73	0.3	22.55	0.5	47.09	914.96	n/a	914.96
116	297.17	25.64	1.1	27.93	1.6	55.93	890.09	n/a	890.09
117	9.02	19.93	-0.1	22.89	0.5	35.26	223.94	<lod< td=""><td>223.94</td></lod<>	223.94
118a	290.87	21.91	0.3	24.03	0.8	55.27	464.2	655.65	1090.00
119	100.80	19.9	-0.1	17	-0.8	45.1	190.4	158	341.21
120	245.00	14.9	-1.2	18.5	-0.4	41.6	746.9	2742	3364.05
121	247.68	15.4	-1.1	15.2	-1.2	29.6	n/a	n/a	n/a
122	222.60	17.6	-0.6	14.6	-1.3	31.8	359.5	n/a	359.5
124	269.25	22.64	0.5	22.6	0.5	48.08	1189.23	n/a	1189.23
125	101.61	1.69	-4.2	0.38	-4.5	<lod< td=""><td>996.37</td><td>441.46</td><td>1417.73</td></lod<>	996.37	441.46	1417.73
126	2460.00	116.2	21.2	110.6	20.0	390.5	6480	20160	25722.06
127	266.73	19.56	-0.2	13.6	-1.5	37.14	610.27	1496.53	2038.66
128	232.70	13.83	-1.5	15.26	-1.2	39.65	n/a	n/a	n/a

The results are written as reported by the laboratories. SUM* - means, that laboratory uses the method involving conversion of senecionine-N-oxide to senecionine prior to quantification.

Figure 22: Senecionine results for sample STD.

Figure 23: Senecionine results for sample **SNH**. The green line shows the assigned value, blue lines - expanded uncertainty of assigned value, red lines - result acceptance range for z-score criteria.

Figure 24: Senecionine results for sample **SAH**. The green line shows the assigned value, blue lines - expanded uncertainty of assigned value, red lines - result acceptance range for z-score criteria.

Figure 25: Senecionine results for sample **NCH**. Laboratory 125 did not detect senecionine in the samples.

Figure 26: Senecionine results for sample **CPM** Laboratories 102, 121 and 128 did not report due to their methodology. The result of laboratory 106a is presented as total senecionine.

Figure 27: Senecionine-N-oxide results for sample **CPM**. Only laboratories which reported numeric figures are shown.

Figure 28: Total senecionine results for sample CPM. Laboratories 102, 121, and 128 did not report results.

Laboratory 125 used mainly self-isolated PAs for calibration. The relatively high number of unsatisfactory results for individual PAs reported by this laboratory suggests that the quality of their standard materials might be a cause for this observation. Laboratory 125 got however satisfactory z-scores for evaluation of total PAs in both samples. This might be explained by the fact of incorrect identification of PAs (**Tables 6-12, 6-13**).

Laboratory 126 submitted results several fold higher than the assigned values for samples. Aliquotation or calculation errors might be the cause for this, as these sources were identified as leading factors for such observations in other PTs.

The content of N-oxides in honey materials was reported to range from 'non detectable' to 50% of the base compound [12]. In this study N-oxides were however a minor contributor to the total PA content in honey. N-oxides are however an important contributor to the total PA content in the hay sample. This is illustrated in **Figure 29**.

Figure 29: Results for analysis for total retrorsine (A), senecionine (B) and seneciphylline (C) in plant material for which N-oxides have been considered (Yes) or not considered (No). Horizontal lines indicate robust means.

6.3.2 Incorrect identification of PAs

positive	as faise negative					
Sample	Analyte	Result, µg/kg	Labcode	Sample	Analyte	Result, µg/kg
STD	Retrorsine N-oxide	6.3	105	СРМ	Seneciphilline-N-oxide	<lod< td=""></lod<>
STD	Ridelliine	6.68	105	СРМ	Senecionine-N-oxide	<lod< td=""></lod<>
SAH	Lycopsamine	11.54	117	СРМ	Senecionine-N-oxide	<lod< td=""></lod<>
SNH	Senecionine-N-oxide	5.54	125	NCH	Senecionine	<lod< td=""></lod<>
SNH	Seneciphilline-N-oxide	11.55	125	NCH	Lycopsamine	<lod< td=""></lod<>
SAH	Seneciphilline-N-oxide	19.02	127	STD	Retrorsine	<lod< td=""></lod<>
СРМ	Senkirkine	12.11	127	SNH	Retrorsine	<lod< td=""></lod<>
SNH	Seneciphilline-N-oxide	6.88	127	SAH	Retrorsine	<lod< td=""></lod<>
STD	Senecionine-N-oxide	20.7	127	NCH	Retrorsine	<lod< td=""></lod<>
STD	Seneciphilline-N-oxide	38				
NCH	Seneciphilline-N-oxide	13.82				
SAH	Senkirkine	22.3				
СРМ	Lycopsamine	196.6	-			
	Sample STD STD SAH SNH SNH SAH CPM STD STD STD NCH SAH CPM	SampleAnalyteSampleAnalyteSTDRetrorsine N-oxideSTDRidelliineSAHLycopsamineSNHSenecionine-N-oxideSNHSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSNHSeneciphilline-N-oxideSNHSeneciphilline-N-oxideSTDSenecionine-N-oxideSTDSeneciphilline-N-oxideSTDSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSAHSeneciphilline-N-oxideSAHSenkirkineCPMLycopsamine	positiveSampleAnalyteResult, μg/kgSTDRetrorsine N-oxide6.3STDRidelliine6.68SAHLycopsamine11.54SNHSenecionine-N-oxide5.54SNHSeneciphilline-N-oxide11.55SAHSeneciphilline-N-oxide19.02CPMSeneciphilline-N-oxide6.88STDSenecionine-N-oxide20.7STDSeneciphilline-N-oxide38NCHSeneciphilline-N-oxide13.82SAHSeneciphilline-N-oxide13.82SAHSeneciphilline-N-oxide13.82CPMLycopsamine196.6	positiveas raisSampleAnalyteResult, µg/kgLabcodeSTDRetrorsine N-oxide6.3105STDRidelliine6.68105SAHLycopsamine11.54117SNHSenecionine-N-oxide5.54125SNHSeneciphilline-N-oxide11.55125SAHSeneciphilline-N-oxide19.02127CPMSenkirkine12.11127SNHSeneciphilline-N-oxide6.88127STDSenecionine-N-oxide20.7127STDSeneciphilline-N-oxide3813.82NCHSeneciphilline-N-oxide13.82SAHSAHSenkirkine22.3CPMLycopsamine196.6146.6	positiveas raise negativeSampleAnalyteResult, μg/kgLabcodeSampleSTDRetrorsine N-oxide6.3105CPMSTDRidelliine6.68105CPMSAHLycopsamine11.54117CPMSNHSenecionine-N-oxide5.54125NCHSNHSeneciphilline-N-oxide11.55125NCHSAHSeneciphilline-N-oxide19.02127STDCPMSenkirkine12.11127SNHSNHSeneciphilline-N-oxide6.88127SAHSNHSeneciphilline-N-oxide20.7127NCHSTDSeneciphilline-N-oxide38NCHSeneciphilline-N-oxide13.82SAHSenkirkine22.3CPMLycopsamine196.6	positiveas faise negativeSampleAnalyteResult, µg/kgLabcodeSampleAnalyteSTDRetrorsine N-oxide6.3105CPMSeneciphilline-N-oxideSTDRidelliine6.68105CPMSenecionine-N-oxideSAHLycopsamine11.54117CPMSenecionine-N-oxideSNHSenecionine-N-oxide5.54125NCHSenecionineSNHSeneciphilline-N-oxide11.55125NCHLycopsamineSAHSeneciphilline-N-oxide19.02127STDRetrorsineCPMSenkirkine12.11127SNHRetrorsineSNHSeneciphilline-N-oxide6.88127SAHRetrorsineSTDSeneciphilline-N-oxide20.7127NCHRetrorsineSTDSeneciphilline-N-oxide3813.82SAHSeneciphilline-N-oxide13.82SAHSeneciphilline-N-oxide13.82SAHSenkirkine22.3VCHVeropsamineSTDLycopsamine196.6196.6SSSS

Table 6-10: Results of participants identified as false positive

Table 6-11: Results of participants identified as false negative

A number of laboratories had difficulties identifying compounds correctly in the samples. Due to the low probability of oxidation of PA bases to N-oxides it has been decided to put a threshold of 5 μ g/kg to all N-oxides detected in the standard solution and the spiked samples (**STD**, **SNH** and **SAH**). Other compounds detected by participants but being not spiked in to the samples were treated in the same way. It was more challenging to point out false negative results. For judging the correctness of identification the LOD/LOQ of the laboratory in question was considered. Thus the result of laboratory 118a for retrorsine in the sample **CPM** (< LOD) has not been judged false negative, because the laboratory declared a LOQ of 351 μ g/kg for this substance, which was, however, significantly higher than median of results provided by participants (125.2 μ g/kg).

The correct identification of the isomer pair intermedine/lycopsamine present in sample **NCH** was also difficult to assess. Laboratories using an alkaline mobile phase for HPLC separation were not able to separate these isomers, and therefore reported both (in e.g. 103, 111) as single result. Laboratory 122 did not use an alkaline mobile phase, but did not include lycopsamine into the scope of the method. This participant identified intermedine in the sample. Since one of the isomers has been identified it cannot be considered as false identification.

The summary of false identification is reported in the **Tables 6-12, 6-13**.

6.4 Evaluation of the questionnaire

6.4.1 Scope of the method

Thirty two different compounds were detect in the test material; on average 10 analytes were reported per laboratory. Some laboratories (111, 118a) indicated just the most relevant analytes, due to lack of sufficient reporting fields in the questionnaire. Four laboratories reported only the sum of PAs.

For analysing the relationship between the number of analytes in the scope of the method and the total PA content reported, participants have been clustered into 4 groups according to the number of PAs included in the method: 1-9, 10-15 and 16-20 as well as a group of laboratories who used a method that converts all retronecine/heliotridine-based PA esters as well as their corresponding N-oxides into the core structures, i.e., retronecine and/or heliotridine, resulting in a sum parameter for all PAs present.

Figure 30: Effect on the amount of analytes in the scope of the method for naturally contaminated honey.

Figure 31: Effect on the amount of analytes in the scope of the method for contaminated hey.

Concerning spiked materials no significant difference was observed with respect to the number of analytes in the scope. This is due to the fact that a limited number of PAs was added, which were in the scope for the majority of laboratories. For naturally contaminated honey the relationship between the number of analytes in the method scope and the total content of PA's reported was not observed (**Figure 30**),

However for naturally contaminated hey a weak relationship exists between the total amount of PAs reported (**Figure 31**) and the number of PAs in the scope of the method used for determination.. Only *Senecio* spp. has been blend in to the hay and the dominant PAs such as retrorsine, senecionine, seneciphyline were quantified by most laboratories. More than half of the participants included the corresponding N-oxides. Other important PAs produced by *Senecio* spp. are erucifoline and the corresponding N-oxide [2] which have been detected by laboratory 111. Additionally laboratory 106a, identified acetylerucifoline, but due to a lack of standard materials it was not quantified.

As a matter of fact, lycopsamine and very small amounts of echimidine detected by a few laboratories suggest that the honey was collected from various PA producing plant species. Furthermore, it is remarkable that the sum parameter methods gave much higher results than the summing up of individually determines PAs, which indicates that not all PAs present have been quantified by the latter methods.

Another possibility is that the honey contained other substances which were also converted into retronecine, which is measured with the "sum parameter" methods. To come to a final conclusion, there is clear need for more standard substances to provide better coverage of relevant PAs.

6.4.2 Sample preparation

Extraction by simple agitation (shaker) has been found a sufficient technique for the extraction of analytes from hay (17 laboratories) and honey (22 laboratories). As an extraction solvent most laboratories used aqueous acid solutions (formic acid, sulphuric acid and hydrochloric acid). Solid phase extraction implementing SCX or mixed mode cation exchange sorbents were utilised by the majority of participants (17 for honey matrix, 15 for plant matrices) for clean-up. Double or more clean-up steps have been applied in several cases (lab 112, 118b). Participants, who used mass spectrometry compatible extraction solvents were able to do direct analysis without any further clean-up (103, 114, 120, 127 in case of honey). There is a clear relation between the amount of sample taken for analysis and the capacity of clean-up columns (107, 111, 112, 119, 122, 126, 128 in case of honey), and the ones using more than 5 g used larger columns. This tendency is even more pronounced in case of the hay sample; because of the higher concentrations present in the samples, most laboratories used a lower sample intake.

6.4.3 Detection and separation

Most laboratories that used HPLC for separation employed triple quadrupol mass spectrometers for detection/quantification, but there were some (117, 118a, 120) using high resolution instruments. At least two transitions per analyte were monitored; however, labs 117 and 120 used only one ion trace on high resolution instruments. This may result in insufficient identification, because of lack of structural data. Laboratory 118a however did additional fragmentation and measurement of the fragment ions to confirm the presence of analytes. For retronecinic and heliotridinic alkaloids the most common fragments were 94, 120 and 138, which are common for all of the PAs having a fused ring substructure. On the other hand laboratories 128, 105, 125, 108, 126, 122, 109, 101, 102, 104 made use of CO loss transitions, such as 336>308 (senecionine/integerrimine) for identification.

The highest diversity in methods was found for the determination of the sum parameter. Laboratories had very different approaches for the derivatisation of necinic bases before detection. 113 and 123 used classical silvlation, 106b used heptrafluorobutyrilimidazole to produce bis-heptafluorbutyric esters of necinic bases. Lab 118b used pyrrolytical methylation of analytes with tetramethylammonium hydroxide, which took place in the GC injector, producing methyl ethers of necinic bases.

Reversed phase separation has been utilised by all laboratories using LC, most of them have used C18 narrow bore columns (\leq 2.1 mm i.d.). Gradient elution has been utilised by all participants. The majority of laboratories used an acidic mobile phase (17 participants). Alkaline mobile phase should give significantly more retention of analytes on the columns, however some of diastereomeric analytes (lycopsamine/intermedine) cannot be separated, and identified individually as reported by 111, 103.

DB-5 type GC columns can be used to detect silvlated or heptafluorobutyrated necinic bases, however a WAX type column must be used to detect methyl ethers, as it was done by laboratory 118b.

6.4.4 Quantification

Participants have been asked to provide relevant information regarding quantification. The calibration range reported by participants varied from one order of magnitude, up to three orders of magnitude. Some participants indicated different calibration ranges for honey and hay. This could be linked to different levels of PAs occurring in the materials. The most common calibration range reported spanned two orders of magnitude. A majority of participants used matrix matched calibration (14 laboratories). External standard calibration was used by 8 participants, while the remaining ones made use of standard addition. A comparison of results for all of these laboratories is presented in figure 32. There is no clear difference between the calibration approaches and results obtained by laboratories in terms of accuracy, but standard addition produced the least spread of results.

Internal standards were utilised by 12 participants. The majority used heliotrine, stating that it was necessary to screen samples for presence of it in advance. Other compounds used as internal standards were D6-isoproturon, D1-retrorsine-bis-butyrate and D2-retrorsine-bis-butyrate. Effects of use of internal standards on the results is given in figure 33.

Figure 32: Effect of quantification type used on results for spiked honey samples.

Figure 33: Effect of use of internal standard on results for spiked honey samples.

7 Conclusions

- Twenty-six out of 28 registered participants submitted results for this exercise. Two laboratories quantified PAs individually as well as used a technique that produced a sum parameter for all PAs.
- All laboratories used mass spectrometric detection.
- No significant differences were found between any of the quantification approach used: standard calibration, matrix matched calibration or standard addition. Results obtained using an internal standard (heliotrine in most cases) were not statistically different form the ones obtained without internal standard. Most of the participants using heliotrine noted that additional screening for it must be carried out in the sample before use.
- The results obtained by laboratories using a "sum parameter" approach and laboratories analysing PAs individually did not differ statistically for spiked samples. Both approaches were equally effective when a limited number of known PAs were present in the sample.
- The results for naturally contaminated samples obtained by the two approaches did not agree. Apparently, there is a lack of standard substances on the market to analyse for the majority of PAs produced by different plant species.
8 Acknowledgements

JRC-IRMM would like to acknowledge the support for carrying out this proficiency test:

Gerard van Bruchem, RIKILT – Institute of Food Safety (The Netherlands), for perfoming qNMR measurements on PAs.

Arne Dübecke, Quality Services International GmbH (Germany) - for allocation of honey test material.

Breitsamer und Ulrich GmbH & Co KG (Germany) – for allocation of blank honey test material.

Franz Ulberth and Beatriz de la Calle, JRC-IRMM for their support.

Håkan Emteborg JRC-IRMM for ampouling of the test samples.

www.ak-kreuzkraut.de - for kind permission to use the picture located on the title page.

All the participants for cooperation:

Table 8-1 : Participating laboratories

Company	Country
ICT Prague	Czech Republic
Central Institute for Supervising and Testing in Agriculture (Feed)	Czech Republic
Laboratoire SCL de Strasbourg	France
Quality Services International GmbH	Germany
LAVES Lebensmittelinstitut Braunschweig	Germany
Federal Institute for Risk Assessment	Germany
Technische Universität Braunschweig, Inst. f. Pharm. Biol.,	Germany
CVUA Freiburg	Germany
Chemical and Veterinary Analytical Institute Muensterland-Emscher-Lippe (CVUA-MEL)	Germany
CVUA Stuttgart	Germany
Intertek Food Services GmbH	Germany
Chemisches und Veterinäruntersuchungsamt Ostwestfalen-Lippe (CVUA-OWL)	Germany
Gehrlicher Pharmazeutische Extrakte GmbH	Germany
Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit	Germany
LUA Sachsen Standort Chemnitz	Germany
LUFA Speyer	Germany
Landesuntersuchungsamt Rheinland-Pfalz, ILC Trier	Germany
Breitsamer und Ulrich GmbH & Co.KG	Germany
PhytoLab GmbH & Co KG	Germany
Technische Universität Dresden	Germany
Public Analyst's Laboratory	Ireland
Cork Institute of Technology	Ireland
The State Laboratory	Ireland
Health Science Authority	Singapore
Federal Office of Public Health, Food Safety Division	Switzerland
RIKILT - Institute of Food Safety	The Nederlands
NVWA	The Nederlands
Food and Environment Research Agency	United Kingdom

9 References

- [1] M. Boppré, "The Ecological Context of Pyrrolizidine Alkaliods in Food, Feed and Forage: an owerview," *Food Additives and Contaminants*, vol. 28, no. 3, pp. 260-281, 2011.
- [2] EFSA Panel on Contaminants in Food Chain, "Opinion of the scientific panel on contaminants in the Food Chain on a request from the European Commission related to pyrrolizidine alkaloids as undesirable substances in animal feed," *The EFSA Journal*, vol. 447, pp. 1-51, 2007.
- [3] EFSA Panel on Contaminants in Food Chain, "Scientific opinion on pyrrolizidine alkaloids in food and feed," *The EFSA Journal*, vol. 2406, no. 9(11), pp. 1-134, 2011.
- [4] M. Kempf, M. Wittig, A. Reinhard, K. von der Ohe, T. Blacquere, K. P. Raezke, R. Michel, P. Schreier and T. Beuerle, "Pyrrolizidine Alkaloids in Honey: Comparison of Analytical Methods," *Food Additives And Contaminants*, vol. 28, no. 3, pp. 325-347, 2011.
- [5] International Organization of Legal Metrology, *Weights of Classes E1, E2, F1, F2, M1, M1-2, M2, M2-3, and M3 Part 1: Metrological and Technical Requirements,* 2004.
- [6] "Directive 2002/32/EC of the European Parliament and of the Coucil of 7 May 2002 on Undesirable Substances in Animal Feed," *Official Journal of European Communities*, vol. L 140, pp. 10-21, 2002.
- [7] ISO 13528:2005, " Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons".
- [8] M. Thompson, "Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing," *Analyst*, vol. 125, pp. 385-386, 2000.
- [9] I. J. Elbers, P. P. Mulder and M. de Nijs, "Interlaboratory Research Study for Pyrrolizidine Alkaloids in Animal Feed," *RIKILT Report 2012.507*, 2012.
- [10] Analytical Methods Committee, *Robust statistics: a method of coping with outliers*, 2001.
- [11] M. Thompson, S. L. Ellison and R. Wood, "The International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories," *Pure Appl. Chem.*, vol. 78, no. 1, pp. 145-196, 2006.
- [12] A. Dübecke, G. Beckh and C. Lüllmann, "Pyrrolizidine Alkaloids in Honey and Pollen," *Food Additives and Contaminants*, vol. 28, no. 3, pp. 348-358, 2011.
- [13] ISO 17043:2010, "Conformity assessment -- General requirements for proficiency testing".
- [14] EU-RL. for. Pesticides, "General Protocol for EU Profitiency Tests for Pesticides Residues in Food and Feed," 2010.

10Annexes

10.1 Particle size analysis for plant material

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements Reference Materials Unit Retieseweg 111, 2440 Geel, Belgium

RM Unit Report of Analysis #2386

Particle Size Analysis by LASER LIGHT DIFFRACTION According to RM WI/0042

Requested by: Applicant sample identification:

RM Unit sample(s) ID:17043 to 1Sample reception date (dd/mm/yyyy):21/03/2012Condition of the samples:ok (powderDue date (dd/mm/yyyy):30/03/2012

J.Stroka TM-111109 TM-120320A TM-120320B (see attached request in annex 2) **17043 to 17046** 21/03/2012 ok (powder) 30/03/2012

The particle size distribution is given in volume fraction of equivalent sphere diameter in µm. The uncertainties associated with the measurements can be found in Table 1 of page 2.

Results are valid only if 15% < Optical Concentration (Copt) < 25%

See attached graphs in the annex 1 (6 pages).

Number of pages: 9 (this page included) in 2 annexes

Date and signature Responsible Analyst

22/03/2012

Data files are stored in the following folders:

PSA computer (Registration number 01RG 2004 00772 04) D:\PSA\request 2386

Note: No feedback within 4 weeks is seen as acceptance of the report. Potential rests of samples will be destroyed after that period.

This report must not be reproduced except in full without the written consent of the RM Unit

Page 1 of 2

Date and signature Laboratory responsible

12/02-

J: drive (for archiving) J:\PSA\request 2386

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements Reference Materials Unit, Processing Lab Retieseweg 111, 2440 Geel, Belgium

Annex to RM Unit Report of Analysis #2386 Laser Light Diffraction (Annex \mathcal{A})

Measurement date and time : 2012-03-22, 10:07:49

sediment, Sample ID: 17043, Replicate: a Operator: MF. Tumba

DEVICE:HELOS (H3335) & CUVETTE, R3+R5+R7Dispersant: 2-PropanolDispersing method:1200Trigger condition: ref measStirrer rate:1200.00Sonication duration: 0.00 sComment:Sonication duration:0.00 s

EVALUATION: WINDOX 5.7.1.0, FREE

Optical concentration: 23.65 %

RESULTS

 $x_{10} = 15.31 \ \mu m$ $x_{16} = 24.44 \ \mu m$ $x_{50} = 76.72 \ \mu m$ $x_{84} = 168.71 \ \mu m$ $x_{90} = 206.64 \ \mu m$ The relative expanded uncertainties are given on page 2 in the main part of the Laser Diffraction report

This report must not be reproduced except in full without the written consent of the RM Unit Page d of d

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements Reference Materials Unit, Processing Lab Retieseweg 111, 2440 Geel, Belgium

Annex to RM Unit Report of Analysis #2386 Laser Light Diffraction

(Annex /)

Measurement date and time : 2012-03-22, 10:15:27

sediment, Sample ID: 17043, Replicate: b

Dperator: MF. Tumba

DEVICE: HELOS (H3335) & CUVETTE, R3+R5+R7Dispersant: 2-PropanolDispersing method: 1200Trigger condition: 10sStirrer rate: 1200.00Sonication duration: 0.00 sComment:Comment:

EVALUATION: WINDOX 5.7.1.0, FREE

Optical concentration: 24.05 %

RESULTS

 $\kappa_{10} = 14.69 \ \mu m$ $x_{16} = 23.74 \ \mu m$ $x_{50} = 76.06 \ \mu m$ $x_{84} = 168.82 \ \mu m$ $x_{90} = 207.99 \ \mu m$ The relative expanded uncertainties are given on page 2 in the main part of the Laser Diffraction report

IMPORTANT: Results valid only if 15% < Optical Concentration < 25%

This report must not be reproduced except in full without the written consent of the RM Unit Page . \pounds of ...0

DEVICE: HELOS (H3335) & CUVETTE, R3+R5+R7Dispersant: 2-PropanolDispersing method: 1200Trigger condition: 10sStirrer rate: 1200.00Sonication duration: 0.00 sComment:Comment:

EVALUATION: WINDOX 5.7.1.0, FREE

Optical concentration: 20.86 %

RESULTS $x_{10} = 11.59 \ \mu m$ $x_{16} = 17.66 \ \mu m$ $x_{50} = 50.12 \ \mu m$ $x_{84} = 102.51 \ \mu m$ $x_{90} = 1.022 \ \mu m$ The relative expanded uncertainties are given on page 2 in the main part of the Laser Diffraction

IMPORTANT: Results valid only if 15% < Optical Concentration < 25%

This report must not be reproduced except in full without the written consent of the RM Unit Page \mathcal{Y} . of \mathcal{L}

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements Reference Materials Unit, Processing Lab Retieseweg 111, 2440 Geel, Belgium

Annex to RM Unit Report of Analysis #2386 Laser Light Diffraction (Annex \mathcal{A})

Measurement date and time : 2012-03-22, 10:45:41

sediment, Sample ID: 17046, Replicate: a Operator: MF. Tumba

10.50

12.50

2.60

3.10

3.89

4.99

18.17

21.00

DEVICE: HELOS (H3335) & CUVETTE, R3+R5+R7Dispersant: 2-PropanolDispersing method: 1200Trigger condition: ref measStirrer rate: 1200.00Sonication duration: 0.00 sComment:Comment:

EVALUATION: WINDOX 5.7.1.0, FREE

Optical concentration: 22.41 %

RESULTS

 $x_{10} = 5.56 \ \mu m$ $x_{16} = 9.07 \ \mu m$ $x_{50} = 45.55 \ \mu m$ $x_{84} = 174.72 \ \mu m$ $x_{90} = 224.70 \ \mu m$ The relative expanded uncertainties are given on page 2 in the main part of the Laser Diffraction report

This report must not be reproduced except in full without the written consent of the RM Unit Page 2 of 6.

43.00

51.00

48.57

53.04

175.00

84.04

EUROPEAN COMMISSION DIRECTORATE GENERAL JRC JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements Reference Materials Unit, Processing Lab Retieseweg 111, 2440 Geel, Belgium

Annex to RM Unit Report of Analysis #2386 Laser Light Diffraction

(Annex /)

Measurement date and time : 2012-03-22, 10:51:20

sediment, Sample ID: 17046, Replicate: b

Operator: MF. Tumba

DEVICE: HELOS (H3335) & CUVETTE, R3+R5+R7Dispersant: 2-PropanolDispersing method: 1200Trigger condition: 10sStirrer rate: 1200.00Sonication duration: 0.00 sComment:Comment:

EVALUATION: WINDOX 5.7.1.0, FREE

Optical concentration: 21.99 %

RESULTS

 $x_{10} = 5.52 \ \mu m$ $x_{16} = 8.95 \ \mu m$ $x_{50} = 42.91 \ \mu m$ $x_{84} = 157.10 \ \mu m$ $x_{90} = 199.99 \ \mu m$ The relative expanded uncertainties are given on page 2 in the main part of the Laser Diffraction report

IMPORTANT: Results valid only if 15% < Optical Concentration < 25%

This report must not be reproduced except in full without the written consent of the RM Unit Page \int_{Ω} of \int_{Ω}

						Am mit,	\ll
RM-Uni	it Reques	st for	Analysis #	238	6 G		
From: J. Stro	ika		Unit	FSQ	Action: 0		
Results	due: 30/	03/2012	and to be sent to	J. Stroka			
Sample ID S	ample descripti	ion		Am	nount		
17012	T	M-111109		×	~ 10 g		
	Ar Particle size an	nalyses ìalysis		replicates 2	Comment		
17044	ΥL	M-120320A			~ 10 g		
	A r Particle size an	nalyses Ialysis		replicates 2	Comment		
17016	νĻ	M-120320B	~		~ 10 g		
	A r Particle size an	n alyses Ialysis	·	replicates	Comment		
21/03/2012	2	Signat	ure (applicant):	Herter	Romo Tures My		
forward to: if if if	mainly biotech: Ph mainly organic ana only isotopics: S. F	illippe Corbi: alysis: Marta Richter; if nu	sier; if mainly inorganic a Dabrio; if engineering Iclear chemistry: R. Jak	analysis:James materials: Gert I opič; if mainly tal	Snell; if mainly PSA/Sieve/water analysis: H. Roebben;if protein characterisation: I. Zeger rget prepar <u>atio</u> n: G. Sibbens	âkan Emteborg; s	
Laborat	ory: Request rec	ceived on	91/032212accepte	ed by (signatu	re) Multullited		

Page 1 of 1

10.2 Homogeneity tests

Table 10-1

PA/PT/2012/NCH	Lycop	samine	Retrorsine		Sene	cionine	Seneci	phylline
Sample	Result a	Result b	Result a	Result b	Result a	Result b	Result a	Result b
TM110901_2	8.347	8.754	47.350	45.850	41.497	41.529	45.589	43.673
TM110901_23	8.310	8.674	46.750	45.750	40.010	42.760	45.677	44.715
TM110901_24	8.815	8.370	52.200	50.150	43.398	41.048	50.510	47.269
TM110901_25	8.327	8.246	50.500	49.200	41.913	42.267	47.036	47.370
TM110901_35	8.936	8.917	50.750	50.350	43.239	44.660	51.330	50.932
TM110901_37	8.598	8.825	50.100	44.350	42.319	42.253	48.077	43.178
TM110901_44	8.131	8.890	44.600	49.400	39.310	43.888	42.043	48.448
TM110901_5	8.627	8.704	48.500	43.300	44.003	42.254	46.801	42.157
TM110901_52	8.690	8.505	49.600	50.500	42.253	43.078	49.487	48.613
TM110901_54	8.630	8.515	51.050 48.700		42.736	42.736 41.702		48.528
mean =	8.	591	48.448		42.306		47.065	
σ _t (%)=	0.	220	0.220		0.220		0.220	
σ _t =	1.	890	10	.658	9.307		10.354	
s _x =	0.	165	2.	021	0.	785	2.	353
s _w =	0.	243	2.	222	1.	432	2.	286
s _s =	0.	000	1.	271	0.	000	1.	710
0,3*σ _t =	0.	567	3.	198	2.	792	3.106	
Result =	Pass	s _s < 0,3 σ _t	Pass	s _s < 0,3 σ _t	Pass	s _s < 0,3 σ _t	Pass	s _s < 0,3 σ _t

Table 10-2

PA/PT/2012/CPM	Retr	orsine	Senec	ionine	Senecip	ohylline	
Sample	Result a	Result b	Result a	Result b	Result a	Result b	
TM-120404_38	414.585	411.000	1988.012	1920.000	1308.691	1270.000	
TM-120404_3	415.170	400.995	2035.928	1900.498	1307.385	1144.279	
TM-120404_40	422.886	408.367	1940.299	1922.311	1263.682	1304.781	
TM-120404_42	425.150	389.055	1986.028	1840.796	1307.385	1263.682	
TM-120404_56	398.414	391.566	1942.517	1877.510	1278.494	1275.100	
TM-120404_57	415.187	396.432	1893.491	1952.428	1242.604	1298.315	
TM-120404_58	411.298	413.174	1932.607	1966.068	1328.048	1277.445	
TM-120404_73	395.792	391.391	1953.908	1881.882	1252.505	1211.211	
TM-120404_7	396.825	412.115	1924.603	1976.167	1230.159	1340.616	
TM-120404_85	389.610 393.393		1828.172	1921.922	1238.761	1241.241	
mean =	404.620		1929	9.257	1269.219		
σ _t (%)=	18%		14	1%	15%		
σ _t =	74.183		279	.607	196.260		
s _x =	8.	510	27.	310	26.820		
s _w =	10	.940	59.	090	50.630		
s _s =	3.	530	0.0	000	0.000		
0,3*σ _t =	22	.255	83.	882	58.878		
Result =	Pass	s _s < 0,3 σ _t	Pass	s _s < 0,3 σ _t	Pass	s _s < 0,3 σ _t	

Table 10-3

PA/PT/2012/SNH	Retr	orsine	Sene	cionine	Seneci	phylline	
Sample	Result a	Result b	Result a	Result b	Result a	Result b	
TM120514_2	18.135	19.361	18.231	18.181	37.614	37.837	
TM120514_9	19.421	20.071	18.829	18.334	38.546	39.466	
TM120514_13	20.646	19.666	18.833	19.182	39.480	38.557	
TM120514_22	19.120	20.934	18.824	19.956	39.126	40.694	
TM120514_28	19.492	19.012	19.590	17.829	40.062	38.713	
TM120514_37	18.863	18.903	17.901	17.336	38.303	36.239	
TM120514_40	19.650	18.188	19.063	17.317	40.472	36.763	
TM120514_42	19.639	18.572	18.955	18.278	37.617	38.128	
TM120514_52	19.262	17.813	18.871	16.748	38.916	34.947	
TM120514_56	19.120 19.390		19.414	17.815	38.141	36.517	
mean =	19.262		18	.474	38.307		
σ _t (%)=	2	22%		2%	22%		
σ _t =	4.	238	4.	064	8.428		
s _x =	0.	547	0.	530	1.015		
s _w =	0.	770	0.	884	1.461		
s _s =	0.	053	0.	000	0.000		
0,3*σ _t =	1.	271	1.	219	2.528		
Result =	Pass	s _s < 0,3 σ _t	Pass	s _s < 0,3 σ _t	Pass	s _s < 0,3 σ _t	

Table 10-4

PA/PT/2012/SAH	Retro	orsine	Sene	cionine	Seneci	phylline	
Sample	Result a	Result b	Result a	Result b	Result a	Result b	
TM120608_14	18.586	18.155	18.586	16.907	38.934	37.464	
TM120608_18	18.395	19.136	17.505	20.393	38.075	41.462	
TM120608_22	20.179	17.277	18.992	17.468	40.062	36.082	
TM120608_36	18.471	17.734	17.317	18.033	36.558	35.967	
TM120608_3	18.576	18.361	17.892	17.681	38.033	37.694	
TM120608_54	17.373	17.604	17.765	18.588	36.217	38.061	
TM120608_60	18.038	19.037	19.202	18.553	38.113	38.556	
TM120608_69	18.345	17.829	18.924	18.507	39.006	36.142	
TM120608_52	19.168	18.498	19.856	20.081	41.482	44.019	
TM120608_65	19.370 19.384		19.468	19.584	42.692	43.464	
mean =	18.476		18	.565	38.904		
σ _t (%)=	22%		2	2%	22%		
σ _t =	4.	065	4.	084	8.559		
s _x =	0.	513	0.	781	2.	295	
s _w =	0.	759	0.	876	1.	560	
s _s =	0.	000	0.	475	2.012		
0,3*σ _t =	1.	219	1.	225	2.568		
Result =	Pass	s _s < 0,3*s	Pass	s _s < 0,3*s	Pass	s _s < 0,3*s	

10.3 Stability test

Table 10-5

DA /DT /2012/CTD		Retrorsine	2	S	enecionin	e	Se	eneciphylline	
PA/P1/2012/ 31D		Storage			Storage			Storage	
Time, weeks	RT	+4	-20	RT	+4	-20	RT	+4	-20
0	11.5	11.5	11.5	12.1	12.1	12.1	24.7	24.7	24.7
0	11.8	11.8	11.8	12.8	12.8	12.8	24.6	24.6	24.6
0	12.9	12.9	12.9	13.6	13.6	13.6	24.8	24.8	24.8
4	12.1	12	12.8	12.5	11.8	12.3	25	25	23.5
4	11.9	12.4	13	11.4	12.3	13.4	24.1	24.4	26.3
8	13.0	12.8	11.9	13.3	12.5	12	24	24.6	23.7
8	11.5	11.6	12.5	12	12.1	13	23.4	23.8	25.2
12	12.3	12.4	13.1	12.1	12.6	12.8	23.7	24	24.7
12	12.1	11.4	11.9	12	11.5	12.3	24.3	22.8	25.6
12	11.0	12.1	11.9	11.3	11.8	12.4	21.9	23.1	25.4
Slope	-0.016	-0.008	0.006	-0.068	-0.063	-0.032	-0.12	-0.117	0.034
Intercept	12.108	12.137	12.294	12.719	12.688	12.86	24.79	24.88	24.688
CI(slope) P=0.95	0.099	0.085	0.094	0.107	0.082	0.083	0.105	0.072	0.132
Conclusion	Stable	Stable	Stable	Stable	Stable	Stable	Instability	Instability	Stable
Δ ₍₀₋₁₂₎ , %	n/a	n/a	n/a	n/a	n/a	n/a	5.668	5.66802	n/a

Table 10-6

DA /DT /2012 /CNU		Retrorsine		S	enecionin	e	Se	neciphylli	ne
PA/P1/2012/ 3NH		Storage			Storage			Storage	
t, weeks	RT	+4	-20	RT	+4	-20	RT	+4	-20
0	21.2	21.2	21.2	21.0	21.0	21.0	38.3	38.3	38.3
0	21.6	21.6	21.6	21.5	21.5	21.5	40.4	40.4	40.4
0	20.6	20.6	20.6	21.0	21.0	21.0	39.3	39.3	39.3
4	22.9	21.0	21.3	23.2	21.8	21.4	40.7	39.8	38.4
4	21.6	20.8	20.8	23.5	22.2	21.1	39.8	41.1	37.6
8	23.8	21.1	22.2	23.9	20.9	24.2	42.5	39.5	41.6
8	20.8	21.7	21.4	20.7	23.4	21.9	38.5	39.0	39.7
12	23.0	20.8	22.0	24.0	20.7	23.6	44.4	39.1	40.6
12	21.6	22.2	21.1	22.3	22.8	21.6	40.7	38.7	40.1
12	21.5	20.1	21.8	22.8	22.9	22.9	38.0	40.3	42.3
Slope	0.072	0.002	0.052	0.126	0.0795	0.149	0.134	0.02	0.171
Intercept	21.420	21.106	21.086	21.627	21.35	21.11	39.47	39.68	38.8
CI(slope) P=0.95	0.156	0.085	0.071	0.177	0.142	0.139	0.301	0.135	0.19
Conclusion	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable
Δ ₍₀₋₁₂₎ ,%	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table 10-7

		Retrorsine		9	Senecionin	е	Se	eneciphylli	ne
PA/P1/2012/ SAH		Storage			Storage			Storage	
t, weeks	RT	+4	-20	RT	+4	-20	RT	+4	-20
0	19.8	19.8	19.8	20.9	20.9	20.9	39.5	39.5	39.5
0	19.9	19.9	19.9	19.9	19.9	19.9	38.2	38.2	38.2
0	18.2	18.2	18.2	17.3	17.3	17.3	35.8	35.8	35.8
4	18.7	18.8	18.1	18.4	18.0	17.2	35.1	36.3	33.4
4	17.7	17.4	18.3	17.4	17.1	17.6	34.1	34.2	34.5
8	18.6	18.1	20.7	18.1	18.2	21.6	35.7	34.4	39.8
8	19.5	18.3	21.6	18.6	17.9	20.6	38.8	34.7	41.0
12	20.2	19.1	18.8	20.4	19.5	18.0	39.4	37.0	36.2
12	20.0	16.8	18.4	19.8	16.8	18.1	37.6	32.3	36.9
12	18.9	18.1	19.0	19.5	17.6	19.8	37.3	35.1	39.1
Slope	0.047	-0.1	0.008	0.049	-0.099	0.009	0.066	-0.247	0.077
Intercept	18.870	19.037	19.224	18.73	18.911	19.04	36.75	37.23	36.982
CI(slope) P=0.95	0.133	0.137	0.19	0.196	0.199	0.261	0.301	0.268	0.39
Conclusion	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable
Δ ₍₀₋₁₂₎ , %	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table 10-8

DA /DT /2012 /NCH		Retrorsine	5	S	enecionin	е	Se	neciphylli	ne	Ľ	ycopsamin	ie
PA/P1/2012/ NCH		Storage			Storage			Storage			Storage	
t, weeks	RT	+4	-20	RT	+4	-20	RT	+4	-20	RT	+4	-20
0	44.8	44.8	44.8	35.9	35.9	35.9	35.2	35.2	35.2	11.0	11.0	11.0
0	44.8	44.8	44.8	39.3	39.3	39.3	35.5	35.5	35.5	11.4	11.4	11.4
0	44.5	44.5	44.5	40.2	40.2	40.2	35.4	35.4	35.4	10.9	10.9	10.9
4	46.0	47.0	45.3	40.5	38.4	40.6	36.1	37.1	36.5	11.3	11.1	10.7
4	43.7	44.8	43.8	35.6	38.3	37.5	35.4	36.1	35.6	10.4	10.8	11.1
8	48.4	44.6	46.1	41.3	38.8	38.8	37.3	37.2	34.3	12.3	11.2	11.2
8	44.3	45.1	45.3	36.3	37.8	37.5	30.7	36.1	35.1	11.2	10.9	11.7
12	47.4	48.2	49.2	39.0	40.3	40.6	36.1	36.9	37.5	11.4	11.7	12.4
12	47.2	43.4	46.6	38.1	37.7	36.9	33.9	35.8	35.0	11.0	10.8	10.7
12	43.7	43.9	44.3	34.7	37.7	35.9	31.7	35.8	35.0	10.3	10.7	10.5
Slope	0.137	0.021	0.177	-0.08	0.007	-0.068	-0.141	0.065	0.012	-0.032	-0.004	0.017
Intercept	44.645	44.97	44.403	38.57	38.39	38.72	35.574	35.71	35.436	11.145	11.078	11.064
CI(slope) P=0.95	0.245	0.231	0.205	0.367	0.212	0.289	0.31	0.103	0.143	0.092	0.048	0.088
Conclusion	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable	Stable
Δ ₍₀₋₁₂₎ , %	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table 10<u>-</u>9

DA /DT /2012 /CDM		Retrorsine			Senecionine	2	S	eneciphyllin	e
PA/P1/2012/ CPIVI		Storage			Storage			Storage	
t, weeks	RT	+4	-20	RT	+4	-20	RT	+4	-20
0	394.1	394.1	394.1	1960.4	1960.4	1960.4	1316.8	1316.8	1316.8
0	402.6	402.6	402.6	1978.1	1978.1	1978.1	1272.4	1272.4	1272.4
0	407.3	407.3	407.3	2051.5	2051.5	2051.5	1318.1	1318.1	1318.1
4	379.0	393.4	388.9	2000.0	2061.8	2033.7	1310.0	1374.5	1349.2
4	370.4	395.0	354.5	1837.1	2110.0	1787.5	1350.5	1260.0	1191.7
8	387.7	389.9	392.3	1978.1	2003.9	2055.3	1292.2	1293.2	1393.3
8	392.8	393.2	392.4	1994.0	2035.9	1972.1	1316.1	1337.3	1324.7
12	410.0	377.9	391.3	2079.6	1784.6	1907.6	1482.6	1216.4	1278.3
12	365.8	384.3	380.8	1888.7	2015.9	2027.7	1212.7	1330.7	1276.0
12	406.6	385.8	392.4	2028.0	1939.0	1931.9	1338.7	1289.4	1271.3
Slope	-0.291	-1.493	-0.663	1.323	-7.617	-1.4	2.824	-1.869	-0.589
Intercept	393.371	401.314	393.64	1971.6	2039.82	1979	1304.07	1312.09	1302.71
CI(slope) P=0.95	2.514	0.648	2.23	11.56	12.943	13.077	10.776	7.02	8.735
Conclusion	Stable	Instability	Stable	Stable	Stable	Stable	Stable	Stable	Stable
Δ ₍₀₋₁₂₎ , %	n/a	4.64916	n/a	n/a	n/a	n/a	n/a	n/a	n/a

10.4 Opening of registration

		Font Size: A A A News Links Press	comer Site map Contac
Main Menu		About us Legislation Network laboratories	News archive
bout IRMM	>	Interlaboratory comparisons What's new?	Environmental
ctivities	>	Contacts Network pages Resources Proficiency Test on	Nuclear research
Reference naterials	>	Determination of Pyrrolizidine Alkaloids in Honey and Materials of Plant Origin	materials and measurements
U Reference aboratories	>		biotechnology and health
nterlaboratory omparisons	>	Institute for Reference Materials and Measurements organises a proficiency test on determination of pyrrolizidine	
ob opportunitie	s >	alkaloids in honey and materials of plant origin.	catalogue
vents	*	The objective of this study is to evaluate laboratories'	
raining	>	capability to determine the analytes. The study also aims at identifying methodological and/or analyte specific trends in	-
Calls		the analysis.	TrainMiC
ublications			Summy in Mercury in Chemistry

One standard solution (of unknown content of PAs. The identity of the PAs will be indicated)

Two honey samples (of unknown PA content)

One plant material (of unknown PA content)

General outline

Participation is free of charge. Participants commit themselves to submit results within the deadlines.

Please note that for evaluation of methodological and/or analyte specific trends, it is crucial to have detailed information on the methodology used.

Registration

To register please follow the link (<u>PA PT Registration distributed.pdf</u> [498Kb]), and send the completed PDF form to <u>vytautas.tamosiunas@ec.europa.eu</u>.

Registration deadline	Sample dispatch	Reporting of results	Report
28 February 2012	End of March 2012	6 weeks from sample dispatch	

10.5 Accompanying letter

Please report all requested results and answer the questionnaire provided with this letter. This will help us to gain as much as possible methodological information that can be evaluated in the report.

Print out the final pdf and return the signed and stamped report sheet NOT later than 10th August 2012 to:

Vytautas Tamosiunas JRC-IRMM-FSQ Retieseweg 111 B-2440 Geel, Belgium Tel: +32-14-571 852 FAX: +32-14-571 783 E-mail: vytautas.tamosiunas@ec.europa.eu

In case of questions please do not hesitate to contact me.

Vytautas Tamosiunas

Cc: Frans Verstraete, Franz Ulberth, Beatriz De La Calle, Joerg Stroka

10.6 . Acknowledgement of receipt form

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements Food Safety and Quality Unit

Geel, 26th June 2012

PROFICIENCY TESTING MATERIALS RECEIPT FORM

Name:	
Institute:	
Address:	
Laboratory code:	

NOTE: store all materials in a refrigerator at +4 °C!

Please ensure that the items listed below have been received undamaged, and then check the relevant statement:

Matrix	Sample code	OK	Damageo
Ampoule with standard solution	PA/PT/2012/STD		
Natural honey	PA/PT/2012/NCH		
Natural honey	PA/PT/2012/SNH		
Artificial honey	PA/PT/2012/SAH		0
Plant material	PA/PT/2012/CPM		

Signature/Stamp:

Please fax and e-mail the completed form to:

Vytautas Tamosiunas EC-JRC-IRMM Food Safety and Quality Unit Retieseweg 111 B-2440 Geel. Belgium Tel: +32-14-571 852 FAX: +32-14-571 783 E-mail: vytautas.tamosiunas@ec.europa.eu

10.7 Questionnaire and instructions

EUROPEAN COMMISSION DIRECTORATE-GENERAL JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements Food Safety and Quality Unit

Geel, 26th June 2012

Questionnaire for the PT on Pyrrolizidine Alkaloids (PA's) in Honey and Material of Plant Origin

Dear Participant

Please note that we need electronic version of the document. Do not print, scan and then send the form, as it's not possible to extract data from it. Please use "submit by e-mail button, at the end of document. As we need confirmation, please use "Print Form" button, sign, and fax it to us.

Instructions:

In the form You will be asked to calculate total concentration for all PA's quantified and express it as retrorsine equivalent. Please use provided formula:

$$c_{(total_PA)} = \sum \frac{c_{(PA)i}}{Mr_{(PA)i}} \times 351.39$$

c(total_PA's) - total amount of PA's in the sample expressed as retrorsine equivalent (µg/kg) c(PA)i - concentration of PA quantified in the sample (µg/kg) Mr(PA)i - molecular mass of PA quantified in the sample 351,39 - molecular mass of retrorsine

All results must be reported with precision of two decimals.

Results which are below Your LOD, must be reported as: "<LOD", the analytes, which are detected, but cannot be quantified, should be reported "<LOQ"

For sample preparation techniques as well as detection techniques, please fill only the field which are relevant for Your method. If You do not see proper choice in combo boxes, please do not hesitate to use "other" fields. The information we collect is confidential and is necessary to identify the possible methodological trends.

The deadline for analysis and reporting the results is 10 August 2012

Section 1: General Infor	mation	Lab Code
Laboratory Name:		
Address:		
City:	Postal Code:	Country: Albania 7
Measurement responsible:		
e-mail:		Tel. Nr.:
Date		Signature/ Stamp:

|--|--|

General method information for honey analysis

Do You detect ind	ividual analytes w	ith this method or "S	um Parameter"?		-
How many Years h	ave You been an	alyzing honey for PA'	s?		-
Is the method app	lied in routine an	alysis?			
If "yes" how many	samples do You a	nalyze per Year?			
Is the method acc	redited according	to ISO 17025?			
Sample prepa	ration for hon	ey analysis			
Amount of sample	taken for the ana	lysis in grams:			-
Extraction techniq	ue used:			Other:	
Extraction solvent			• Other:		
* - please indicate sorb	ents, drying agents us	ed in "other" field		-	
** - please indicate con	centrations of solution	ns used in "other" field			
Sample cleanup te	echnique:		• Other:		
SPE sorbent type:			• Other:		Ĵ
SPE column form f	actor:		• Other:		
SPE column manu	facturer:		• Other:		
LLE solvents:				P	
Do You reduce N-	Oxides during san	nple preparation:			7
Derivatization for	PA-NO > PA-base	reduction:		Other	
Derivatization for	IA NO 2 IA DOSE	reduction.		ouner.	
Derivatization pric	or detection:			• Other:	
-					
Additional comments on sample preparation					
First Page	Next Page	Previous Page	Last Page		Page 2 of 7

- 90	ay	5	~	0	1

General method information for plant material

Do You detect individual analytes with this me	thod or "Sum Parameter"?	•
How many Years have You been analyzing plan	nt materials for PA's?	•
Is the method applied in routine analysis?		•
If "yes" how many samples do You analyze per	Year7	+
Is the method accredited according to ISO 170	25?	-
Sample preparation for plant materi	al analysis	
Amount of sample taken for the analysis in gra	ms:	•
Extraction technique used:	• Other:	
Extraction solvent:	• Other:	
* - please indicate concentrations of the solutions used in t	he "other" field	
Sample cleanup technique:	• Other:	
SPE sorbent type:	Other:	
SPE column form factor:	• Other:	
SPE column manufacturer:	• Other:	
LLE solvents:		
Do You reduce N-Oxides during sample prepar	ration:	•
Derivatization for PA-NO > PA-base reduction:	• Other:	
Derivatization prior detection:	• Other:	

Additional comments on sample preparation				
First Page	Next Page	Previous Page	Last Page	Page 3 of 7

Scope of the method, individual analyte determination approach

Analyte	Plant Material		Honey Material		Source of standards	
	LOD, µg/kg	LOQ, µg/kg	LOD, µg/kg	LOQ, µg/kg		
				-		
			_			
	2					

Scope of the method, sum parameter determination approach

Analyte group	Calibration Compound	Plant r	naterial	Но	ney	Source of standard
	-	LOD, µg/kg	LOQ, µg/kg	LOD, µg/kg	LOQ, µg/kg	
Retronecinic						
Heliotridinic						

Quantification- both approaches

Quantification is d	lone by:	•	Concentration range:	
Internal standard	used:	*	If "Yes" specify:	
First Page	Next Page	Previous Page	Last Page	Page 4 of 7

Detection techniques:

Detection technique used:	• Other
LC Detector:	Other
GC Detector:	Other:
Liquid Chromatography	
LC Stationary Phase:	Other:
Diameter, mm:	Particle size, µm:
Sorbent Manufacturer:	• Other
LC Elution : Eluent 1:	Eluent 2:
Column temperature:	Flow rate, ml/min
Please specify wavelengths for optical detection, if used;	
Gas Chromatography	
GC Stationary Phase:	Other:
Diameter, mm: Length, m:	Film Thickness, µm:
Column Manufacturer:	Other

Mass Spectrometric detection

GC Elution :

Ion traces for Sum Parameter determination approach

•

Carrier Gas:

Analyte group	Calibration Compound	lons monitored fo	r "Sum parameter" deterr	nination by GC-MS
		m/z 1	m/z 2	m/z 3
Retronecinic				
Heliotridinic	1			

-

Column flow, ml/min:

First Page	Next Page	Previous Page	Last Page	Page 6 of 7
------------	-----------	---------------	-----------	-------------

Ion traces for individual analyte determination approach

Analyte	lons (transitio	ns) monitored for LC/GC-MS(MS) experiments
	lon (Transition) 1	Ion (Transition) 2	Ion (Transition) 3
			1
-			
ample:	if SIR used, input - 300	if SRM used, input 352 > 132	

Please fax and e-mail the completed form to:

Vytautas Tamosiunas EC-JRC-IRMM Food Safety and Quality Unit Retieseweg 111 B-2440 Geel. Belgium Tel: +32-14-571 852 FAX: +32-14-571 783 E-mail: vytautas.tamosiunas@ec.europa.eu

	Submit by E-mail	
-		_
	Dalast Parasi	
	Print Form	

10.8 Experimental details

10.8.1List of analytes analysed by laboratories

Table 10-1()
Lab. Code	Analytes reported
101	Echimidine, Echimidine-N-Oxide, Heliotrine, Lycopsamine, Monocrotaline, Retrorsine, Senecionine,
	Seneciphylline, Senkirkine
102	Echimidine, Heliotrine, Intermedine, Lasiocarpine, Lasiocarpine-N-oxide, Lycopsamine, Monocrotaline,
	Monocrotaline-N-oxide, Retrorsine, Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline,
	Seneciphylline-N-oxide, Senkirkine
103	Echimidine, Europine, Europine-N-oxide, Heliotrine, Heliotrine-N-oxide, Indicine-N-oxide, Intermedine,
	Lasiocarpine, Lasiocarpine-N-oxide, Lycopsamine, Monocrotaline, Monocrotaline-N-oxide, Retrorsine,
	Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide, Senkirkine
104	Echimidine, Heliotrine, Intermedine, Lasiocarpine, Lycopsamine, Monocrotaline, Monocrotaline-N-oxide,
	Retrorsine, Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide,
	Senkirkine, Trichodesmine
105	Echimidine, Heliotrine, Lycopsamine, Monocrotaline, Monocrotaline-N-oxide, Retrorsine, Retrorsine-N-
	oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide, Senkirkine
106a	Acetyleruciflorine, Echimidine, Echiumine, Heliotrine, Jacobine, Jacozine, Monocrotaline, Retrorsine,
	Senecionine, Seneciphylline
107	Retrorsine, Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide,
100	Senkirkine
108	Echimidine, Heliotrine, Lasiocarpine, Lycopsamine, Monocrotaline, Monocrotaline-N-oxide, Retrorsine,
100	Schimiding, Schecionine, Senecionine, Senecionine-N-oxide, Seneciphynne, Seneciphynne-N-oxide, Seneciphynne-N-
109	evide Manacrotalina Manacrotalina N avida Patrarcina Patrarcina N avida Sanacionina Sanacionina N
	oxide Senecinhylline Senecinhylline-N-oxide Senkirkine
111	Echimidine Echimidine-N-Ovide Erucifoline Erucifoline-N-ovide Integerrimine Integerrimine-N-ovide
111	Jacobine Jacobine-N-oxide Lyconsamine/Intermedine Lyconsamine/Intermedine-N-oxide Otosenine
	Retrorsine, Retrorsine-N-oxide, Riddelliine, Riddelliine-N-oxide, Senecionine, Senecionine-N-oxide,
	Seneciphylline. Seneciphylline-N-oxide, Senkirkine
112	Echimidine, Heliotrine, Heliotrine-N-oxide, Integerrimine, Lasiocarpine, Lycopsamine, Monocrotaline,
	Monocrotaline-N-oxide, Retrorsine, Retrorsine-N-oxide, Riddelliine, Senecionine, Senecionine-N-oxide,
	Seneciphylline, Seneciphylline-N-oxide, Senkirkine
114	Retrorsine, Senecionine, Seneciphylline
116	Echimidine, Lasiocarpine, Lycopsamine, Monocrotaline, Retrorsine, Senecionine, Seneciphylline, Senkirkine
117	Jacobine, Lycopsamine, Retrorsine, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-
	oxide, Senkirkine
118a	Lycopsamine, Retrorsine, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide
119	Retrorsine, Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide,
	Senkirkine
120	Retrorsine, Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide
121	Echimidine, Heliotrine, Intermedine, Lycopsamine, Monocrotaline, Monocrotaline-N-oxide, Retrorsine,
	Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide, Senkirkine
122	Intermedine, Retrorsine, Senecionine, Seneciphylline
124	Echimidine, Lycopsamine, Retrorsine, Senecionine, Seneciphylline
125	Echimidine, Lycopsamine, Monocrotaline, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-
	N-oxide, Senkirkine
126	Retrorsine, Retrorsine-N-oxide, Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide
127	Echimidine, Grayanotoxin III, Heliotrine, Lycopsamine, Monocrotaline, Retrorsine, Retrorsine-N-oxide,
	Senecionine, Senecionine-N-oxide, Seneciphylline, Seneciphylline-N-oxide, Senkirkine
128	Retrorsine, Senecionine, Seneciphylline, Senkirkine

10.8.2LOD's LOQ's and sources of standards

Entiers given bellow were transferred without modification. Fields where participants did not indicated LOD and or LOQ were left blank. **Table 10-11**

Senecinhylline	На	-	Plant		
Standard source/Lab.		Jiey		iant	
Code	LOD	LOQ	LOD	L	OQ
AppliChem					
104	0.3	1	5.7	7 1	6.7
Biopure					
114	3	10		3	10
Carl Roth					
101	1	3			
108	0.3	0.5		5	10
121	0.2	1			
106a	0.3	0.5	25	5	50
Cfm Oskar Tropitzsch					
118a	4	15	113	3	319
Chiron					
102	5	10			
116	0.2	0.7	0.7	7	2.5
122	1.2	3.6	12	2	36
Extrasynthese					
117	5	10		1	5
isolated from plant					
material					
125	0.13	0.36	20	0	60
PhytoLab					
103	1	3	3	3	10
105	1	2			
107	0.28	1.11	0.28	3 1	.11
109	0.5	1	0.5	5	1
111	0.5		I	5	
119	0.25	0.5	0.0	3	1.6
120		5			10
124	0.3	0.15	0.3	3 C	.15
126	6	21			
127	0.35	1.24	0.5	5 1	.85
128	3.77	12.58			
Phytoplan					
112				1	14
Table 10-12					_
Seneciphylline-N-oxide	Но	ney	Pla	ant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOO	5
in house synthesis					
125	0.14	0.42	50	15	0
118a	5	20	65	21	7
Latoxan					
109	0.5	1	0.5		1
PhytoLab					
102	5	10			
103	1	3	3	1	0
104	0.6	1.7	7.4	21.	8
105	10	15			
107	0.27	1.08	0.27	1.0	8
108	0.3	0.5	5	1	0
111	0.5		5		
112			5	14.	8
119	0.5	1	0.8	1.	6
120		5		1	0
121	0.2	1			
126	6	22			
127	0.83	2.94	0.6	2.	2
RIKILT					
117					

Table 10-13								
Senecionine			Hor	ney	,		Pla	nt
Standard source/Lab. Co	de	_ L/	OD	L	OQ	L	.OD	LOQ
AppliChem								
104			0.2		0.6		3.9	11.4
Biopure								
114			3		10		3	10
Carl Roth								
108			0.3		0.5		5	10
121			0.2		1			
127		0).11	0	.41		1.1	3.9
Chiron								
102			5		10			
116			0.2		0.5		1	5
122			1		3.1		10	31
Extrasynthese								
117			5		10		1	5
isolated from plant mater	rial							
125		0).71	0	.21		70	210
PhytoLab								
101			1		3			
103			1		3		3	10
105			1		2			
107		0.	295	1	.18	0	.295	1.18
109			0.5		1		0.5	1
111			0.5				5	
119		0).25		0.5		0.8	1.6
120					5			10
124			0.3		0.2		0.3	0.2
126			7		24			
128		2	2.21	7	.35			
118a			3		9		49	164
Phytoplan					-			
112							1	14
Sigma								
106a			0.3		0.5		50	100
Table 10-14								
Senecionine-N-oxide		Но	ney			Pla	ant	
Standard source/Lab.				<u>`</u>		,	100	
Code	LC	סנ	LOU	Į	LOI	כ	LOQ	
In house synthesis								
125	0.	81	0.2	4	6	5	195	5
118a		5	2	0	5	1	171	
Latoxan								
109	C).5		1	0.	5	1	_
PhytoLab								
102		5	1	0				
103		1		3		3	10)
104	C).4	1.	1	5.	7	16.7	7
105		10	1	5				
107	0.	27	1.0	8	0.2	7	1.08	3
108	C).3	0.	5		5	10)
111	C).5		-		5		
112						2	14.8	3
119	C).5		1	0.	8	1.6	5
120	Ĭ			5		-	10)
121	C).2		1			(
126	Ĭ	2		7				
127	0.	36	1.2	9	0.	3	1.15	5
RIKILT			<u>_</u>	-	Ű			
117								

|--|

Retrorsine	Н	Honey Plan			ant	
Standard source/Lab.		100			1.00	,
Code	LOD	LOQ	LO	U	LOC	ł
Biopure						
114	3	1	0	3	1	0
Carl Roth						
127	0.09	0.3	5 0.	.2	0.	8
Cfm Oskar Tropitzsch	L		4 4 4		~-	_
118a Chiron	4	1	4 10	15	35	1
			0			
102	5	1	2	1		5
122	0.0	2	2	1 8	2	5 1
Phytol ab	0.0	2.	-	0	2.	-
103	1		3	3	1	0
107	0.32	1.2	6 0.3	2	1.2	6
109	0.5		1 0.	5		1
111	0.5			5		
112				2	14	4
119	0.25	0.	5 0.	8	1.0	6
120			5		1	0
126	6	1	9	1		
124	1	0.	4		0.4	4
128	4.03	13.4	2			
Sigma			-			
101	1	1	3 D E	0	17	n
105	0.4	1.	2 5.	9	17.	2
105	<u> 1</u>	0	5	5	1	0
117	0.5	0.	5	5	1	0
121	0.2		1			
106a	0.5		1 5	0	10	0
Table 10-16						-
Retrorsine-N-oxide	Но	nev	Р	lan	t	
Standard source/Lab.		100			00	1
Code	LOD	LUQ	LOD	L	JUQ	
Latoxan						
109	0.5	1	0.5		1	
PhytoLab						
102	5	10				
103	1		3		10	
104	07	2	0 /	-	<u>10</u> 07 5	
105	10	1 5	9.4		27.5	
105	10	15	0.00			
107	0.26	1.04	0.26	_	1.04	
108	0.3	0.5	5	_	10	
111	0.5		5			
112			10	1	14.8	
119	0.5	1	0.8		1.6	
120		5			10	
121	0.5	2				
126	7	23		1]
127	0.47	1.68	0.4	1	1.5	1
Table 10-17				<u> </u>		1
Integerrimine	Но	ney	Р	lan	t	
Standard source/Lab.		100		,	00	
Code	LUD	LUQ	LOD	L	JUQ	
gift				1		
111	0.5		5	1		
RIKILT			L	\vdash		
112			1		14	l
Table 10-18			_			1
Integerrimine-N-oxide	Но	ney	Р	an	τ	
Standard source/Lab.	LOD	LOQ	LOD	L	OQ	
Lude		_			-	
III HOUSE SYNULESIS			<u> </u>	+		ł

in house synthe
111
Table 10-19

Monocrotaline	Ho	nev	Pla	ant
Standard source/Lab.	1.0			
Code	LOD	LOQ	LOD	LOQ
Carl Roth				
104	0.6	1.8	5	14.7
108	0.3	0.5	5	10
125	0.52	0.15	12	36
Chiron				
102	5	10		
PhytoLab				
103	1	3	3	10
109	20	20	20	20
112			1	14
116	0.6	2	0.3	1
127	0.34	1.25	0.45	1.65
Sigma				
101	1	3		
105	1	2		
121	0.2	1		
106a	1	2	50	100
Table 10-20				
Monocrotaline-N-oxide	Но	ney	Pla	ant
Standard source/Lab.		100		100
Code	LOD	LUQ	LOD	LUQ
Latoxan				
109	20	20	20	20
Phytol ab				
102	10	20		
102	10	20	2	10
103	1	3	3	10
104	0.2	0.6	3./	11
105	10	15		
108	0.3	0.5	5	10
112			5	14.8
121	05	2		
Table 10-21	010	-		
Lycopsamine	Но	nev	Pla	ant
Lycopsamine Standard source/Lab.	Но	ney	Pla	ant
Lycopsamine Standard source/Lab. Code	Ho LOD	ney LOQ	Pla LOD	ant LOQ
Lycopsamine Standard source/Lab. Code isolated from plant	Ho LOD	ney LOQ	Pla LOD	ant LOQ
Lycopsamine Standard source/Lab. Code isolated from plant material	Ho LOD	ney LOQ	Pla LOD	ant LOQ
Lycopsamine Standard source/Lab. Code isolated from plant material 125	Ho LOD 0.81	ney LOQ 0.24	Pla LOD 10	ant LOQ 30
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab	Ho LOD 0.81	ney LOQ 0.24	Pla LOD 10	LOQ 30
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102	Ho LOD 0.81	ney LOQ 0.24 10	Pla LOD 10	LOQ 30
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103	Ho LOD 0.81 5 1	ney LOQ 0.24 10 3	Pla LOD 10 3	ant LOQ 30 10
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104	Ho LOD 0.81 5 1 0.4	ney LOQ 0.24 10 3 1.2	Pla LOD 10 3 11.1	ant LOQ 30 10 32.5
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105	Ho LOD 0.81 5 1 0.4 1	ney LOQ 0.24 10 3 1.2 2	Pla LOD 10 3 11.1	ant LOQ 30 10 32.5
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108	Ho LOD 0.81 5 1 0.4 1 0.3	ney LOQ 0.24 10 3 1.2 2 0.5	Pla LOD 10 3 11.1 5	ant LOQ 30 10 32.5 10
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109	Ho LOD 0.81 5 1 0.4 1 0.3 0.5	ney LOQ 0.24 10 3 1.2 2 0.5 1	PI2 LOD 10 3 11.1 5 0.5	ant LOQ 30 10 32.5 10 1
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112	Ho LOD 0.81 5 1 0.4 1 0.3 0.5	ney LOQ 0.24 10 3 1.2 2 0.5 1	PI2 LOD 10 3 11.1 5 0.5 1	ant LOQ 30 10 32.5 10 1 12.5
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116	Ho LOD 0.81 5 1 0.4 1 0.3 0.5 0.2	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7	Pla LOD 10 3 11.1 5 0.5 1 0.3	ant LOQ 30 10 32.5 10 12.5 1
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121	Ho LOD 0.81 5 1 0.4 1 0.3 0.5 0.2 0.2	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1	Pla LOD 10 3 11.1 5 0.5 1 0.3	ant LOQ 30 10 32.5 10 12.5 1
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124	Ho LOD 0.81 5 1 0.4 1 0.3 0.5 0.2 0.2 0.3	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.3	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127	Ho LOD 0.81 5 1 0.4 1 0.3 0.5 0.2 0.2 0.3 0.43	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.3 0.1	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a	Ho LOD 0.81 5 1 0.4 1 0.3 0.5 0.2 0.2 0.3 0.43 1	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica	Ho LOD 0.81 5 1 0.4 1 0.3 0.5 0.2 0.2 0.3 0.43 1	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 2	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101	Ho LOD 0.81 0.4 1 0.3 0.5 0.2 0.2 0.3 0.43 1 1	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 2 3	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT	Ho LOD 0.81 0.4 1 0.3 0.5 0.2 0.2 0.2 0.3 0.43 1 1	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 2 3 3	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT 117	Ho LOD 0.81 0.4 1 0.3 0.5 0.2 0.2 0.2 0.3 0.43 1 1	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 3 3	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT 117 Table 10-22	Ho LOD 0.81 0.4 1 0.3 0.4 0.2 0.2 0.2 0.2 0.3 0.43 1 1	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 3 3	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT 117 Table 10-22 Lycopsamine-N-oxide	Ho LOD 0.81 0.4 1 0.4 1 0.3 0.5 0.2 0.2 0.2 0.3 0.43 1 1 1 Ho	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 3 3 3 ney	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.1 75 	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT 117 Table 10-22 Lycopsamine-N-oxide Standard source/Lab.	Ho LOD 0.81 0.4 1 0.4 1 0.3 0.5 0.2 0.2 0.3 0.43 1 1 1 Ho	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 3 3 1.56 2 1.56 2 1.56 2 1.56 2 1.56 2 1.56 2 1.56 2 1.56	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.1 75 	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT 117 Table 10-22 Lycopsamine-N-oxide Standard source/Lab. Code	Ho LOD 0.81 0.4 1 0.3 0.5 0.2 0.2 0.2 0.3 0.43 1 1 1 Ho LOD	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.7 1 0.15 1.56 2 3 3 1 .56 2 2 .5 1 0.2 4 .5 1 0.2 4 .5 1 1 0.2 4 .5 1 0.2 2 .5 1 0.2 1 .5 1 0.2 1 .5 1 0.2 1 .5 1 0.2 1 .5 1 .5 1 .5 1 .5 1 .5 1 .5 1 .5 1	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.1 75 0.3 0.1 75 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT 117 Table 10-22 Lycopsamine-N-oxide Standard source/Lab. Code	Ho LOD 0.81 0.4 1 0.3 0.4 1 0.2 0.2 0.2 0.2 0.3 0.43 1 1 1 Ho LOD	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.7 1 0.15 1.56 2 3 3 ney LOQ	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.1 75 0.3 0.1 75 0.3 0.1 75	ant LOQ 30 10 32.5 10 12.5 1 0.15 0.4 251
Lycopsamine Standard source/Lab. Code isolated from plant material 125 PhytoLab 102 103 104 105 108 109 112 116 121 124 127 118a Planta analytica 101 RIKILT 117 Table 10-22 Lycopsamine-N-oxide Standard source/Lab. Code	Ho LOD 0.81 5 1 0.4 1 0.3 0.5 0.2 0.2 0.2 0.3 0.43 1 1 1 Ho LOD	ney LOQ 0.24 10 3 1.2 2 0.5 1 1 0.7 1 0.15 1.56 2 3 3 LOQ	Pla LOD 10 3 11.1 5 0.5 1 0.3 0.1 75 0.3 0.1 75 0.5	ant LOQ 30 10 32.5 1 12.5 1 0.15 0.4 251 0.4 251

Table 10-23

Intermedine/Lycopsami				
ne	Honey		Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
PhytoLab				
111	0.5		5	

Table 10-24

Intermedine/Lycopsamine-				
N-oxide	Но	ney	Pla	ant
	LO	LO	LO	LO
Standard source/Lab. Code	D	Q	D	Q
in house synthesis				
111	0.5		5	

Table 10-25

Intermedine	Honey		Plant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
PhytoLab				
102	5	10		
103	1	3	3	10
104	0.5	1.5	7.5	22.1
121	0.2	1		
122	1.3	3.9	13	39
Table 10-26				
Heliotrine	Ho	ney	Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
Chiron				
102	5	10		
Latoxan				
101	0.7	2		
104	0.5	1.5	8.4	24.6
108	0.2	0.5	3	6
121	0.2	1		
106a	0.3	0.5	25	50
PhytoLab				
103	1	3	3	10
105	1	2		
109	0.5	1	0.5	1
112	0	0	1	14
127	0.18	0.67	0.1	0.4
Table 10-27				

Heliotrine-N-oxide	Ho	ney	Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
Latoxan				
109	0.5	1	0.5	1
PhytoLab				
103	1	3	3	10
RIKILT				
112			1	14.8

Table 10-28

Echimidine	Но	ney	Pla	ant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ	
isolated from plant material					
125	0.11	0.34	25	74	
no standard available					
106a					
PhytoLab					
102	5	10			
103	1	3	3	10	
104	0.2	0.6	8	23.4	
105	1	2			
109	0.5	1	0.5	1	
111	0.5		5		
112			1	14	
116	0.1	0.5	0.6	2	
121	0.2	1			
124	0.2	0.1	0.2	0.1	
127	0.06	0.24	0.1	0.3	
Planta analytica					
101	0.3	1			
108	0.3	0.5	5	10	

Table 10-29

Echimidine-N-oxide	Honey		Plant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
in house synthesis				
101	0.3	1		
111	0.5		5	
Latoxan				
109	0.5	1	0.5	1
Table 10-30				
Senkirkine	Ho	ney	Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
Carl Roth				
108	0.3	0.5	5	10
121	0.2	1		
isolated from plant material				
125	0.52	0.15	51	153
PhytoLab				
101	0.3	1		
102	5	10		
103	1	3	3	10
104	0.3	1	7.5	22.1
105	1	2		
107	0.3	1.2	0.3	1.2
109	0.5	1	0.5	1
111	0.5		5	
112			1	14
116	0.3	1	0.5	1.5
119	0.25	0.5	0.8	1.6
127	0.09	0.33	0.15	0.6
128	1.06	3.57		
RIKILT				
117				

<u>Table 10-31</u>

Lasiocarpine	Но	ney	Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
Cfm Oskar Tropitzsch				
104	0.3	0.8	6.5	19
Chiron				
102	5	10		
116	0.1	0.5	0.3	1
PhytoLab				
103	1	3	3	10
108	0.3	0.5	5	10
109	0.5	1	0.5	1
RIKILT				
112			1	14
Table 10-32	-			
Lasiocarpine-N-Oxide	Ho	ney	Plant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
PhytoLab				
102	5	10		
103	1	3	3	10
Table 10-33	-			
Jacobine	Но	ney	Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
no standard available				
106a				
PRISNA				
111	0.5		5	
RIKILT				
117				

Table 10-34

Jacobine-N-oxide	Honey		Plant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
in house synthesis				
111	0.5		5	

Table 10-35

Trichodesmine	Honey		Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
Latoxan				
104	0.4	1.2	5	14.5

Table 10-36

Ridelliine	Ho	ney	Plant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
gift				
111	0.5		5	
RIKILT				
112			2	14
Table 10-37				
Ridelliine-N-Oxide	Honey		Plant	
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
gift				
111	0.5		5	
Table 10-38				
Erucifoline	Honey		Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
PRISNA				
111	0.5		5	

Table 10-39

Erucifoline-N-oxide	Honey		Pla	ant
Standard source/Lab. Code	LOD	LOQ	LOD	LOQ
in house synthesis				
111	0.5		5	

Table 10-40

Ho	ney	Plant	
LOD	LOQ	LOD	LOQ
1	3	3	10
Ho	ney	Pla	ant
LOD	LOQ	LOD	LOQ
1	3	3	10
Но	Honey		ant
LOD	LOQ	LOD	LOQ
Honey		Plant	
LOD	LOQ	LOD	LOQ
0.5		5	
Но	ney	Pla	ant
	100		LOO
LOD	LUQ	200	~ ~
	100	200	
	Ho LOD Ho LOD Ho LOD Ho LOD Ho	Honey LOD LOQ 1 3 Honey LOQ LOD LOQ 1 3 Honey LOQ LOD LOQ Honey LOQ LOD LOQ Honey LOQ LOD LOQ Honey LOQ Honey LOQ Honey LOQ LOD LOQ	Honey Pla LOD LOQ LOD 1 3 3 Honey Pla LOD LOQ LOD Honey Pla LOD LOQ LOD 1 3 3 Honey Pla LOD LOQ LOD Honey Pla LOD LOQ LOD

10.8.3Detection parameters

	grane separation	
Question	Reply	Lab. Code
Separation technique	Gas Chromatography	106b, 113, 118b, 123
	(GC)	
	Liquid Chromatography	101, 102, 103, 104, 105, 106a, 107, 108, 109, 111, 112, 114, 116, 117,
	(LC)	118, 119, 120, 121, 122, 124, 125, 126, 127, 128
GC detection	Single guadrupol MS	106b. 113. 118b. 123
	Triple quadrupol MS	101 102 103 104 105 106a 107 108 109 111 112 114 116 119
		101, 102, 103, 105, 106, 107, 108, 107, 108, 103, 111, 112, 111, 110, 113,
	High resolution MS	117 118a 120
6C stationary phase	DB-5 type	1066 123
de stationary phase		112 122
		113, 125
GC column lenght	30 m	1060, 113, 1180, 123,
GC occh diameter	0.25mm	106b, 118b, 123
	0.32mm	113
GC film thickness	0.25μm	106b, 113, 118b
	25µm	123
GC column manufacturer	Agilent	106b, 113, 118b, 123
	Phenomenex	123
GC Elution	Temperature ramp	106b, 113, 118b, 123
GC carrier gas	Не	106b, 113, 118b, 123
GC Column flow	1 ml/min	118b, 123
	1.6 ml/min	106b
	1.7 ml/min	113
I C Column phase	C18	101 103 104 105 106a 108 109 111 112 114 116 117 118a 119
Le column phase	010	100, 103, 104, 103, 1000, 100, 103, 111, 112, 114, 110, 117, 1100, 115,
	DED	102 107 126
IC collumn diameter mm	2	102, 107, 120
Le condititi diameter, min	2 1	103, 103, 1004, 1164, 124, 126
	2.1	101, 102, 104, 107, 108, 109, 111, 112, 114, 117, 119, 120, 121, 122, 120
	3	116
	4	125, 127
LC column lenght, mm	50	101, 107, 114, 124
	15	121, 122
	100	102, 108, 112, 120, 128
	125	118a
	150	103, 104, 105, 106a, 109, 111, 116, 117, 119, 126, 127
	250	125
LC column particle size, µm	<2	101, 104, 108, 111, 114, 119, 120, 122
	2≤x<3	102, 107, 112, 124, 126
	3≤x≤5	103, 106a, 109, 116, 117, 118a, 121, 125, 127, 128
LC column manufacturer	Phenomenex	102, 103, 105, 106a, 112, 124, 126, 127, 128
	Waters	108. 111. 114. 117. 119
	Thermo Fisher Scientific	101 104 109 120 122
	Agilent	101, 101, 105, 125, 122
	VMC	116
		107
	ACE	107
	Masnery-Nager	125
	AkzoNobel	118a
LC separation mode	Gradient elution	101, 102, 103, 104, 105, 106a, 107, 108, 109, 111, 112, 114, 116, 117,
		118a, 119, 121, 120, 122, 124, 125, 126, 127, 128
LC mobile phase pH	Acidic	101, 102, 104, 105, 106a, 107, 109, 114, 116, 117, 118a, 119, 122, 124,
		127, 126, 128
	Basic	103, 108, 111, 112, 120, 121
	Neutral	125
LC pH modifier	НСООН	101, 102, 106, 116, 118, 119, 122, 126, 128
	HCOOH/NH₄COOH	104, 114, 124, 127
	AcOH	107, 109
	AcOH/NH4OAc	105. 117
	NH4COOH	112, 120, 121
	NH40001	103 108 111
	No modifier	105, 100, 111
IC Mobile Phase erroria	Maou	
LC IVIODILE PHASE OFGANIC	IVIEUT	101, 102, 104, 103, 107, 108, 109, 114, 110, 1188, 120

Table 10-45 Chromatografic separation

Question	Reply	Lab. Code
modifier	ACN	103, 106a, 111, 112, 117, 119, 121, 122, 125, 126, 127, 128
LC flow rate, ml/min	0.2	102, 107, 109, 112, 118a, 119, 124
	0.3	101, 103, 104, 106a, 108, 120, 121, 126, 128
	0.35	116, 112
	0.4	111, 114, 117
	0.5	125
	0.15	105
LC column temperature	≤30	101, 103, 109, 112, 116, 118a, 121, 122, 124, 125, 128
	30 <x≤40< td=""><td>102, 104, 105, 106a, 107, 114, 117, 119, 120, 126, 127</td></x≤40<>	102, 104, 105, 106a, 107, 114, 117, 119, 120, 126, 127
	>40	108, 111

Table 10-46 Ion traces (transitions) used by laboratories using individual analyte approach

Analyte	Transition (Ion)	Lab. Code
	monitored	
Acetyleruciflorine	392 >94	106a
	392 >120	106a
Echimidine	398 > 120	101, 102, 103, 104, 105, 106a, 108, 109, 111, 112, 116, 121, 125, 127,
	398 > 138	101, 106a
	398 > 220	102, 103, 104, 105, 108, 109, 111, 112, 121, 125, 127
	398 > 238	108
	398 > 238	102, 104, 105, 109, 125
	398 > 55	116
	398 > 77	116
	398 > 83	101, 106a
	398	124
	220	124
	120	124
Echimidine-N-oxide	414 > 220	101, 109
	414 > 254	101, 109, 111
	414 > 352	109
	414 > 396	101
Echiumine	382 > 120	106a
	382 > 83	106a
	382 > 138	106a
Erucifoline	350 > 138	111
	350 > 94	111
Erucifoline-N-oxide	366 > 94	111
	366 > 118	111
Europine	330 > 138	103
	330 > 156	103
Europine-N-oxide	346 > 172	103
	346 > 111	103
Heliotrine	314 > 120	101, 102, 104, 105, 109, 112
	314 > 138	101, 102, 103, 104, 105, 106a, 108, 109, 112, 121, 127
	314 > 156	101, 102, 103, 104, 105, 106a, 108, 109, 112, 121, 127
	314 > 94	106a
Heliotrine-N-oxide	330 > 138	109, 112
	330 > 172	103, 109, 112
	330 > 298	109
	330 > 80	103
Indicine-N-oxide	316 > 172	103
	316 > 138	103
Integerimine/Senecionine	336 > 120	101, 102, 103, 104, 105, 106a, 107, 108, 109, 111, 112, 114, 116, 119, 121,
		122, 125, 126, 127
	336 > 138	102, 104, 105, 106a, 107, 109, 112, 114, 116, 119, 122, 125, 127, 128,
	336 > 290	128
	336 > 308	101, 102, 104, 105, 108, 109, 122, 125, 126, 128
	336 > 94	101, 103, 106a, 108, 111, 114, 116, 119, 121, 126
	336	124
	120	124
	308	124
	336.1649	117
	336.1802	118a
	336.1805	120
	120.0807	118a
	138 0913	118a

Analyte	Transition (Ion)	Lab. Code
	monitored	
Integerrimine	352 > 118	102, 104, 107, 109, 125, 126
/Senecionine-N-oxide	352 > 120	102, 104, 105, 108, 109, 111, 112, 121, 125, 126, 127
	352 > 136	102, 103, 104, 105, 107, 108, 109, 112
	352 > 138	119, 125
	352 > 94	103, 105, 108, 111, 119, 121, 126, 127
	352.1755	117
	352.1750	118a
	352.1754	120
	136.0757	118a
	120.0807	118a
Intermedine/Lycopsamine	300 > 112	102
	300 > 120	101, 122, 125
	300 > 138	101, 102, 103, 104, 105, 108, 112, 122, 125
	300 > 156	102, 104, 105, 109, 111, 112, 116, 121, 127
	300 > 94	102, 103, 104, 105, 108, 109, 111, 112, 116, 121, 127
	300	124
	156	124
	94	124
	300.1805	117, 118a
	138.0913	118a
	120.0807	118a
Intermedine/Lycopsamine-N-	316 > 111	109
oxide	316 > 138	109, 111
	316 > 172	111
	316 > 94	109
Jacobine	352 > 120	106a, 111
	352 > 138	106a
	352 > 155	111
	352.1577	117
Jacobine-N-oxide	368 > 296	111
	368 > 120	111
Jacozine	350 > 120	106a
	350 > 138	106a
Lasiocarpine	412 > 120	102, 103, 104, 108, 109, 112, 116
	412 > 220	102, 103, 104, 108, 109, 112, 116
	412 > 238	102, 109
	412 > 336	104. 108
	412 > 77	116
Lasiocarpine-N-oxide	428 > 120	103
	428 > 136	102
	428 > 254	102, 103
	428 > 410	102
Monocrotaline	326 > 120	101, 102, 103, 104, 105, 106a, 108, 109, 116, 121, 125, 127
	326 > 121	106a. 109. 112. 121
	326 > 194	101. 102. 105. 108. 112
	326 > 237	102, 104
	326 > 238	125
	326 > 280	104. 125
	326 > 67	116
	326 > 94	101, 103, 105, 106a, 108, 109, 116, 127
Monocrotaline-N-oxide	342 > 118	102, 104, 109
	342 > 119	103
	342 > 120	102, 104, 108, 109, 112
	342 > 136	102
	342 > 137	103. 104. 108. 112. 121
	342 > 236	108
	342 > 94	105, 109, 121
	368 > 136	105
	369 > 120	105
Retrorsine	352 > 120	101, 102, 104, 105, 106a, 107, 108, 109, 111, 112, 114, 116, 119, 121, 122
	202 120	126. 127
	325 > 138	101, 102, 103, 104, 105, 106a, 107, 109, 112, 114, 122, 127, 128
	352 > 276	128
	352 > 324	101, 104, 105, 108, 119, 126, 128
	352 > 67	103
	352 > 77	116

Analyte	Transition (Ion)	Lab. Code
	252 \ 04	102 1062 108 100 111 114 116 110 121 122 126
	352 > 34	102, 1008, 108, 109, 111, 114, 110, 119, 121, 122, 120
	138	124
	130	124
	352 1751	118a
	352 1755	117
	352.1754	120
	138.0913	118a
	120.0807	118a
Retrorsine-N-oxide	368 > 118	102, 108, 119, 126
	368 > 120	102, 103, 104, 105, 108, 109, 111, 112, 119, 121, 126, 127
	368 > 136	104, 105, 109, 112
	368 > 94	103, 105, 107, 108, 109, 111, 119, 121, 126, 127
	368 > 95	102
	368 > 139	107
	368.1704	120
Seneciphylline	334 > 120	101, 102, 103, 104, 105, 106a, 107, 108, 109, 111, 112, 114, 116, 119, 121, 122, 125, 126, 127
	334 > 138	101, 102, 104, 105, 106a, 107, 109, 111, 112, 114, 116, 119, 122, 125, 127, 128
	334 > 151	109
	334 > 288	128
	334 > 306	101, 102, 104, 105, 108, 125, 126, 128
	334 > 94	103, 106a, 108, 114, 116, 119, 121, 122, 126
	334	124
	306	124
	120	124
	334.1649	117, 120
	334.1647	118a
	138.0913	118a
	120.0807	118a
Seneciphylline-N-oxide	350 > 118	102, 104, 107, 108, 109, 119, 125, 126
	350 > 119	
	350 > 120	102, 104, 107, 108, 109, 112, 119, 121, 125, 126, 127
	350 > 130	102, 104, 109, 112, 125
	250 > 04	102 105 108 111 110 121 126 127
	3/2 > 120	105
	350 1598	117 120
	350 1596	118, 120
	136 0757	118a
	120.0807	1188
Senkirkine	366 > 107	101
	366 > 122	101, 102, 103, 104, 105, 108, 109, 111, 119, 125, 127
	366 > 150	102, 104, 105, 107, 108, 109, 112, 119, 121, 125, 128
	366 > 153	128
	366 > 168	101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 116, 119, 125, 127, 128
	366 > 70	116
	366 > 94	116
	366 > 168	121
	366.1911	117
Otosenine	382 > 168	111
	382 > 122	111
Ttrichodesmine	354 > 222	104
	354 > 120	104
D : L I''	354 > 308	104
Rideliine	350 > 120	111, 112
	350 > 94	111
Ridolijno N. ovido	150 > 138	112
Mudelillie-IN-OXIGE	300 2 94 366 \ 119	111
Gravanotovin III	300 / 110	111
Grayanotoxin in	388 > 299	127
	300 - 200	

Table 10-47 Ion traces used by laboratories analysing sum parameter

Analyte group	Ion monitored	Lab. Code
Retronecinic PA's	93	106b, 113
	94	118b
	125	118b
	183	118b, 113, 123
	299	113, 123
	106	334
	547	106b
Heliotridinic PA's	93	123
	94	118b
	125	118b
	183	113, 118b, 123
	299	123
	334	106b
	547	106b

Table 10-48 Quantification

Question	Reply	Lab. Code
Calibration type	Matrix Matched	101, 102, 104, 105, 106a, 106b, 109, 113, 118a, 118b, 119, 121, 124, 127
	calibration	
	Standard calibrations	103, 107, 112, 116, 122, 123, 125, 126, 128
	Standard addition	108, 111, 114, 117, 120
Internal standard used	Yes	101, 106a, 106b, 111, 113, 116, 118a, 118b, 119, 123, 124, 127
	No	102, 103, 104, 105, 107, 108, 109, 112, 114, 117, 120, 121, 122, 125, 126,
		128
Internal standard	Heliotrine	101, 106a, 106b, 111, 113, 116, 118b, 119, 123
	D1-Retrorsine-bis-	118a
	butyrate	
	D2-Retrorsine-bis-	118b
	butyrate	
	D6-Isoproturon	124, 127
Calibration Range	1-150 μg/kg	101
	1-200	102
	0.01-20 ng/ml	103
	1-50 ng/ml	104
	10-200 µg/kg	105
	0.2-10 µg/ml	106a, 106b
	0-1000	107
	0.5-30 μg/ml	108
	5 µg	109
	0-200 μg/kg for	111
	honey,	
	0-4000 µg/kg for	
	plant material	
	0.25-4 ng/ml	112
	5-5000	113
	10-1000 ppb	114
	0.2-15ng/ml	116
	10-200 µg/kg	117
	0.05-1 µg/ml	118a
	0.5-10 µg/ml	118b
	1-1000µg/l	120
	1-50	121
	1-50 ppb	122
	0.1-100ug/l	124
	2 5-80 ng/ml	125
	0.1-2µg/ml	
	0.05-5 µg/ml	126
	0.0005-0.1ng/ml	127
	0-1000 µg/kg	128
	Not Indicated	119 123

Table 10-49 Sample preparation honey material

Question	Reply	Lab. Code
Detection Approach Used	Individual Analytes	101, 102, 114, 116, 117, 118a, 119, 120, 121, 122, 103, 124, 125 , 126, 127,
		128, 104, 105, 107, 108, 109, 111, 112, 120

Question	Reply	Lab. Code
	Sum Parameter	106b, 113, 118b, 123
Experience in the field (Years)	0 <v<1< td=""><td>102, 103, 106a, 106b, 107, 114, 116, 118a, 119, 120, 122, 124, 128</td></v<1<>	102, 103, 106a, 106b, 107, 114, 116, 118a, 119, 120, 122, 124, 128
	1 <v<2< td=""><td>104 125 126 127</td></v<2<>	104 125 126 127
	2 2</td <td>101, 105, 108, 100, 111, 112, 113, 117, 1186, 121, 123</td>	101, 105, 108, 100, 111, 112, 113, 117, 1186, 121, 123
Appual No. of Samples	<100	100, 103, 106, 109, 111, 112, 113, 117, 1100, 121, 125
Annual No. of Samples	×100	108, 115, 110, 120, 121, 122, 125, 127
	>500	
	Not Indicated	102, 103, 104, 106a, 106b, 107, 111, 112, 114, 117, 118a, 118b, 119, 124,
		125, 126,
		128
Honey Analysed on Routine	No	102, 112, 114, 116, 117, 118a, 118b, 119, 122, 103, 124, 125, 128, 104,
Basis		106a, 106b, 107, 111, 120, 126,
	Yes	101, 113, 121, 123, 127, 105, 108, 109
Accreditation	YES	109, 127
	No	102, 103, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a,
		118b, 119, 122, 123, 124, 125, 126, 128
	Not Indicated	114, 121
Sample intake per analysis, g	>10	113. 122
1 1 , , , , ,	1 <x<2< td=""><td>102, 109, 111, 117, 119, 124</td></x<2<>	102, 109, 111, 117, 119, 124
	2 <x<5< td=""><td></td></x<5<>	
	5 <x<10< td=""><td>101 104 1062 1066 108 1182 1186 120 121 125</td></x<10<>	101 104 1062 1066 108 1182 1186 120 121 125
	Not Indicated	101, 104, 1008, 1008, 108, 1188, 1189, 120, 121, 125
Extraction toobaique		105, 125
		110
	extraction (with silica)	
	Shake with solvent	101, 102, 104, 105, 106a, 106b, 107, 108, 109, 111, 112, 113, 114, 117,
		118a, 118b, 119, 122, 123, 124, 126, 128
	Ultrasonic assisted	103, 125
	solvent extraction	
	QuEChERs	121, 127
	Modified QuEChERs	120
Extraction Solvent	HCOOH _(aq) 2%	102, 103, 113
	HCOOH _(aq) 0.1%	111
	HCl _(aq) 0.2M	112
	HCl _(aq)	105
	H ₂ SO _{4(aq)} 0.05M	101, 106, 107, 118a, 118b, 123, 126, 128
	H ₂ SO _{4(aq}	104, 113, 117
	H ₂ SO _{4(aq} /MeOH	125
		116
		108 121 127
		100, 121, 127
		120
	U.1% HCOUH _(aq) /ACN	114
	water	109, 122, 124
Clean-Up	No clean-up	103, 114, 120, 127
	Solid Phase Extraction	101, 102, 104, 106, 107, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123,
	-	125, 126, 128
	Liquid Liquid	105, 108, 109, 112, 118b
	Extraction	
	Dispersive SPE	121
	QuEChERs	124
Solid Phase Extraction Type	SCX	101, 102, 104, 106a, 106b, 107, 117, 118a, 118b, 123, 125, 126
	Mixed mode cation	112, 113, 122, 126, 128
	exchange	
	Hydrophilic lipophilic	111, 116, 119
	bonding	
Solid Phase extraction column	200mg/6ml	113, 116
form factor	500mg/3ml	101, 117
	500mg/6ml	106a, 106b, 118a, 118b, 123, 125
	60mg/3ml	107, 111, 112, 119, 122, 126, 128
	150mg/6ml	102
	500mg/10ml	102
Solid Phase ovtraction column	Agilent	101 104 106 113 118 118 126
manufacturor		107, 107, 110, 113, 110, 120
manufacturer	Matara	107, 111, 110, 117, 113, 123, 120
	waters	102, 112, 122, 128
	wasnery-Nagel	125
Liquid-liquid extraction solvent	ACN	105
	ACN/Water	109
	ACN/Water+Drying	108
	Salts	
Question	Reply	Lab. Code
--------------------------------	---	---
	5%NaOH in	118b
	MeOH/CH ₂ Cl ₂	
	0.2M HCI/ CH ₂ Cl ₂	112
N-oxide reduction before	No	101, 102, 103, 104, 107, 108, 109, 111, 112, 114, 116, 117, 118a, 119, 120,
detection Applied		121, 122, 124, 125, 126, 127, 128
	Yes	106a, 106b, 113, 118b, 123
	Not Indicated	105
Derivatization	Zn, Acid	106a, 106b, 113, 118b
PA-NO -> PA	Not Indicated	123
Derivatization prior detection	No	101, 102, 103, 107, 109, 111, 114, 116, 118a, 119, 121, 122, 124, 126, 127,
		128
	Yes	106b, 113, 118b, 123
	Not Indicated	104, 105, 108, 112, 117, 125
Derivatization Agent prior	Tetramethylammoniu	118b
detection	m hydroxide in MeOH	
	Heptafluorobutyrylim	106b
	idazole	
	N-methyl-N-	123
	(trimethylsilyl)-	
	trifluoracetamide	
	Not Indicated	113
Additional derivatization	LiAlH ₄	106b

Table 10-50 Sample preparation plant material

Question Reply Lab. Code Detection Approach Used Individual Analytes 101, 103, 104, 105, 107, 108, 109, 111, 112, 114, 116, 117, 118a, 119, 122, 124, 125, 126, 127 Sum Parameter 106b, 113, 118b, 123 2xy<5 106a, 106b, 109, 112, 117, 118b, 125, 126 Zays 10x 10x 10x 10x 10x Annual No. of Samples <100 104, 106a, 106b, 107, 113, 114, 116, 112a, 112, 124, 125 102 Annual No. of Samples <100 104, 106a, 106b, 107, 108, 109, 111, 113, 116, 122, 124, 128 100x<<200 112 200x<<200 112 200x<<200 103 100x 100x 101, 105, 107, 108, 109, 111, 112, 113, 112, 122, 124, 125, 126, 128 Plant Analysed on Routine Yes 103, 106a, 106b, 109, 110, 1113, 112, 113, 112, 112, 112, 112, 11			
Detection Approach Used 101, 103, 104, 105, 107, 108, 109, 111, 112, 114, 116, 117, 118a, 119, 122, 124, 125, 126, 127 Sum Parameter 1066, 113, 118b, 123 Experience in the field (Years) 5 111, 123 2 103, 104, 108, 109, 112, 117, 118b, 125, 126 104, 105, 107, 113, 114, 116, 118a, 119, 122, 124, 128 Annual No. of Samples <100	Question	Reply	Lab. Code
124, 125, 126, 127 Sum Parameter 106b, 113, 118b, 123 Experience in the field (Years) >5 111, 123 2 <y<5< td=""> 106a, 106b, 109, 112, 117, 118b, 125, 126 1<y<2< td=""> 107, v1 0, v1, 01, 105, 107, 113, 114, 116, 118a, 119, 122, 124, 128 1 Annual No. of Samples 100 104, 106a, 106b, 107, 108, 109, 111, 113, 116, 122, 127 1 100 104, 106a, 106b, 107, 108, 109, 111, 113, 116, 122, 127 1 1 1 200 00 104, 106a, 106b, 107, 108, 109, 111, 113, 116, 122, 127 1 1 100<<<<200</y<2<></y<5<>	Detection Approach Used	Individual Analytes	101, 103, 104, 105, 107, 108, 109, 111, 112, 114, 116, 117, 118a, 119, 122,
Sum Parameter 106b, 113, 113b, 123 Experience in the field (Years) >5 111, 123 2xyc5 106a, 106b, 109, 112, 117, 118b, 125, 126 12yc2 10x, 10x, 10x, 10x, 10x, 11x, 114, 116, 118a, 119, 122, 124, 128 100 104, 106a, 106b, 107, 108, 109, 111, 113, 116, 122, 124, 128 Annual No. of Samples <100			124, 125, 126, 127
Experience in the field (Years) >5 111, 123 2 <cy<5< td=""> 106a, 106b, 109, 112, 117, 118b, 125, 126 1 1<cy<2< td=""> 103, 104, 108, 127 0 0<rs><10</rs></cy<2<></cy<5<>		Sum Parameter	106b, 113, 118b, 123
	Experience in the field (Years)	>5	111, 123
I-y<2		2 <y<5< td=""><td>106a, 106b, 109, 112, 117, 118b, 125, 126</td></y<5<>	106a, 106b, 109, 112, 117, 118b, 125, 126
Oryc1 101, 105, 107, 113, 114, 116, 118a, 119, 122, 124, 128 Annual No. of Samples <100		1 <y<2< td=""><td>103, 104, 108, 127</td></y<2<>	103, 104, 108, 127
Annual No. of Samples <100		0 <y<1< td=""><td>101, 105, 107, 113, 114, 116, 118a, 119, 122, 124, 128</td></y<1<>	101, 105, 107, 113, 114, 116, 118a, 119, 122, 124, 128
100 <xx<200< td=""> 112 200<x<500< td=""> 103 Not Indicated 101, 105, 114, 117, 118a, 118b, 119, 123, 124, 125, 126, 128 Plant Analysed on Routine Yes 103, 106a, 106b, 108, 109, 111, 112, 113, 1127 Basis No 101, 104, 105, 107, 114, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128 Accreditation Yes 101, 103, 104, 109, 127 No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 127, 128 Accreditation Yes 101, 103, 104, 109, 127 No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 127, 128 Sample intake per analysis, g <1</x<500<></xx<200<>	Annual No. of Samples	<100	104, 106a, 106b, 107, 108, 109, 111, 113, 116, 122, 127
200 <xx<500< th=""> 103 Not Indicated 101, 105, 114, 117, 118a, 118b, 119, 123, 124, 125, 126, 128 Plant Analysed on Routine Yes 103, 106a, 106b, 108, 109, 111, 112, 113, 127 Basis No 101, 103, 104, 105, 107, 114, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128 Accreditation Yes 101, 103, 104, 109, 127 No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 126, 128 Not Indicated 114 Sample intake per analysis, g <1</xx<500<>		100 <x<200< td=""><td>112</td></x<200<>	112
Not Indicated 101, 105, 114, 117, 118a, 118b, 119, 123, 124, 125, 126, 128 Plant Analysed on Routine Basis Yes 103, 106a, 106b, 108, 109, 111, 112, 113, 127 Basis No 101, 104, 105, 107, 114, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128 Accreditation Yes 101, 104, 105, 107, 104, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128 Accreditation Yes 101, 103, 104, 109, 127 No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 126, 128 Sample intake per analysis, g <1		200 <x<500< td=""><td>103</td></x<500<>	103
Plant Analysed on Routine Yes 103, 106a, 106b, 108, 109, 111, 112, 113, 127 Basis No 101, 104, 105, 107, 114, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128 Accreditation Yes 101, 103, 104, 109, 127 No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 126, 128 Sample intake per analysis, g <1		Not Indicated	101, 105, 114, 117, 118a, 118b, 119, 123, 124, 125, 126, 128
Basis No 101, 104, 105, 107, 114, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128 Accreditation Yes 101, 103, 104, 109, 127 No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128 Sample intake per analysis, g <1	Plant Analysed on Routine	Yes	103, 106a, 106b, 108, 109, 111, 112, 113, 127
Accreditation Yes 101, 103, 104, 109, 127 No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 126, 128 Not Indicated 114 Sample intake per analysis, g <1	Basis	No	101, 104, 105, 107, 114, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 128
No 105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122, 123, 124, 125, 126, 128 Sample intake per analysis, g <1	Accreditation	Yes	101, 103, 104, 109, 127
$\frac{123, 124, 125, 126, 128}{Not Indicated} 114$ Sample intake per analysis, g <		No	105, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119, 122,
Not Indicated 114 Sample intake per analysis, g <1			123, 124, 125, 126, 128
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Not Indicated	114
	Sample intake per analysis, g	<1	106a, 106b, 109, 112, 118a, 118b, 124, 125, 127, 128
$ \frac{2 < x < 5 \\ 2 < x < 10 \\ 5 < x < 10 \\ 122 \\ Not Indicated \\ 104, 105, 119, 123 \\ \hline \end{tabular} $ Extraction technique $ \begin{array}{c} Accelerated solvent \\ Accelerated solvent \\ extraction \\ \hline \end{tabular} \\ \end{tabular} \\$		1 <x<2< td=""><td>101, 107, 108, 111, 117</td></x<2<>	101, 107, 108, 111, 117
$ \frac{5 < x < 10}{Not Indicated} 122 \\ \hline Not Indicated 104, 105, 119, 123 \\ \hline Xccelerated solvent 116, 125 \\ extraction \\ \hline Matrix solid phase 109 \\ dispersion \\ \hline Shake with solvent 101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123, 124, 126 \\ \hline Ultrasonic assisted 103, 118a, 118b \\ solvent extraction \\ \hline QuEChERs 127 \\ \hline Method in 128 \\ development \\ \hline Extraction Solvent \\ \hline HCOOH_{(aq)} 2\% 103, 111, 109 \\ \hline HCOOH_{(aq)} 2\% 103, 111, 109 \\ \hline HCOOH_{(aq)} 0.2M 112 \\ \hline HCl_{aq} 0.2M 112 \\ \hline Hcl_{aq} 0.05M 106a, 106b, 107, 118b, 123, 126 \\ \hline Method In 118, 118a, 125 \\ \hline Water 122, \\ \hline ACN/Water 124, 109 \\ \hline HCOOH_{(aq)} 0, 1%/ACN 114 \\ \hline HCOOH_{(aq)} 0, 1%/ACN \\ \hline HCl_{aq} 0, 1%/ACN 114 \\ \hline HCOOH_{(aq)} 0, 1%/ACN \\ \hline Hcooh_{(ab} 0, 1%/ACN \\ \hline Hcooh_{(ab}$		2 <x<5< td=""><td>103, 113, 114, 116</td></x<5<>	103, 113, 114, 116
Not Indicated 104, 105, 119, 123 Extraction technique Accelerated solvent extraction 116, 125 Matrix solid phase dispersion 109 Shake with solvent 101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123, 124, 126 Ultrasonic assisted 103, 118a, 118b solvent extraction QuEChERs QuEChERs 127 Method in 128 development HCOOH _(a0) 2% HCOOH _(a0) 108 HClooH _(a0) 104, 105 HCl _(a0) 104, 105 HCl _(a0) 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109		5 <x<10< td=""><td>122</td></x<10<>	122
Extraction technique Accelerated solvent extraction 116, 125 Matrix solid phase dispersion 109 dispersion Shake with solvent 101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123, 124, 126 Ultrasonic assisted 103, 118a, 118b solvent extraction QuEChERs QuEChERs 127 Method in 128 development HCOOH _(aq) 2% HCOOH _(aq) 108 HCI _(aq) 104, 105 HCI _(aq) 104, 105 HCI _(aq) 0.05M HCOH _(aq) 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water ACOH _(aq) 0, 1%/ACN 114		Not Indicated	104, 105, 119, 123
extraction Matrix solid phase dispersion 109 Shake with solvent 101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123, 124, 126 Ultrasonic assisted 103, 118a, 118b solvent extraction QuEChERs QuEChERs 127 Method in 128 development HCOOH _(ac) 2% HCOOH _(ac) 2% 103, 111, 109 HCOOH _(ac) 0.2M 112 H2SO _{4(ac)} 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 122, ACN/Water 122, ACN/Water 124, 109 HCOOH _(ac) 0.1%/ACN 114	Extraction technique	Accelerated solvent	116, 125
Matrix solid phase dispersion 109 Shake with solvent 101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123, 124, 126 Ultrasonic assisted 103, 118a, 118b solvent extraction QuEChERs QuEChERs 127 Method in 128 development HCOOH _(acl) HCOOH _(acl) 108 HCl _(acl) 104, 105 HCl _(acl) 104, 105 HCl _(acl) 104, 105 HCl _(acl) 104, 105 HCl _(acl) 0.05M Medel 112 H ₂ SO _{4(acl)} 0.05M MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(acl) 0.16/		extraction	
dispersion Shake with solvent 101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123, 124, 126 Ultrasonic assisted 103, 118a, 118b solvent extraction QuEChERs QuEChERs 127 Method in 128 development HCOOH _(aq) 2% Extraction Solvent HCOOH _(aq) 2% HCOOH _(aq) 0 108 HCl _(aq) 0.05M 106a, 106b, 107, 118b, 123, 126 HCl _(aq) 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		Matrix solid phase	109
Shake with solvent 101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123, 124, 126 Ultrasonic assisted 103, 118a, 118b solvent extraction QuEChERs QuEChERs 127 Method in 128 development HCOOH _(aq) 2% Extraction Solvent HCOOH _(aq) 2% HCOH _(aq) 108 HCl _(aq) 104, 105 HCl _(aq) 104, 105 HCl _(aq) 104, 105 HCl _(aq) 104, 105 HCl _(aq) 0.05M MeOH 116, 118a, 123, 126 MeoH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		dispersion	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Shake with solvent	101, 104, 105, 106a, 106b, 107, 108, 111, 112, 113, 114, 117, 119, 122, 123,
Ultrasonic assisted 103, 118a, 118b solvent extraction QuEChERs QuEChERs 127 Method in 128 development HCOOH _(aq) 2% Extraction Solvent HCOOH _(aq) 2% HCOOH _(aq) 108 HCl _(aq) 104, 105 HCl _(aq) 104, 105 HCl _(aq) 0.05M H2SO _{4(aq)} 0.05M MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0.114			124, 126
solvent extraction QuEChERs 127 Method in 128 development 103, 111, 109 Extraction Solvent HCOOH _(aq) 2% 103, 111, 109 HCOOH _(aq) 108 HCOH _(aq) 0.2M 104, 105 HCl _(aq) 0.2M 112 H2SO _{4(aq)} 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		Ultrasonic assisted	103, 118a, 118b
QuEChERs 127 Method in 128 development Extraction Solvent HCOOH _(aq) 2% 103, 111, 109 HCOOH _(aq) 2% 103, 111, 109 HCOOH _(aq) 2% 104, 105 HCl _(aq) 0.2M 112 H2SO _{4(aq)} 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		solvent extraction	
Method in development 128 Extraction Solvent HCOOH _(aq) 2% 103, 111, 109 HCOOH _(aq) 108 HCl _(aq) 104, 105 HCl _(aq) 0.2M 112 HCl _(aq) 106a, 106b, 107, 118b, 123, 126 H2SO _{4(aq)} 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 114		QuEChERs	127
development Extraction Solvent HCOOH _(aq) 2% 103, 111, 109 HCOOH _(aq) 108 HCl _(aq) 104, 105 HCl _(aq) 0.2M H2SO _{4(aq)} 0.05M MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 114		Method in	128
Extraction Solvent HCOOH _(aq) 2% 103, 111, 109 HCOOH _(aq) 108 HCl _(aq) 104, 105 HCl _(aq) 0.2M H2SO _{4(aq)} 0.05M MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN		development	
HCOOH _(aq) 108 HCl _(aq) 104, 105 HCl _(aq) 0.2M H ₂ SO _{4(aq)} 0.05M MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN	Extraction Solvent	HCOOH _(aq) 2%	103, 111, 109
HCl _(aq) 104, 105 HCl _(aq) 0.2M 112 H ₂ SO _{4(aq)} 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		HCOOH _(aq)	108
HCl _(aq) 0.2M 112 H ₂ SO _{4(aq)} 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		HCl _(aq)	104, 105
H2SO4(aq) 0.05M 106a, 106b, 107, 118b, 123, 126 MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN		HCl _(aq) 0.2M	112
MeOH 116, 118a, 125 Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		H ₂ SO _{4(aq)} 0.05M	106a, 106b, 107, 118b, 123, 126
Water 122, ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		MeOH	116, 118a, 125
ACN/Water 124, 109 HCOOH _(aq) 0,1%/ACN 114		Water	122,
HCOOH _(aq) 0,1%/ACN 114		ACN/Water	124, 109
		HCOOH _(aq) 0,1%/ACN	114

Question	Reply	Lab. Code
	ACN	127
Clean-Up	n/a	103, 114, 124, 127
	Solid phase extraction	101, 104, 106a, 106b, 107, 108, 111, 112, 113, 116, 117, 118a, 118b, 119,
	·	122, 123, 125, 126
	Liquid Liquid	105, 109, 112
	extraction	
	QuEChERs	124
Solid phase extraction type	SCX	101, 104, 106a, 106b, 107, 117, 118a, 118b, 123, 126
	Mixed mode cation	112, 113, 116, 122, 126
	exchange	
	Hydrophilic lipophylic	111, 119, 112
	bonding	
	C18	125
Solid Phase extraction column	200mg/3ml	125
form Factor	200mg/6ml	113, 116
	500mg/3ml	101, 117
	500mg/6ml	104, 106a, 106b, 118a, 118b, 123
	60mg/3ml	107, 108, 111, 112, 119, 122
Solid Phase extraction column	Agilent	101, 104, 106a, 106b, 113, 118a, 118b, 126
manufacturer	Phenomenex	107, 108, 111, 116, 117, 119, 123, 126
	Waters	112, 122
	Mashery-Nagel	125
Liquid Liqiud extraction	ACN	105
solvents	ACN/Water	109
	0.2M HCI/0.2M HCI/	112
	CH ₂ Cl ₂ 100mM HFBA	
N-oxide reduction before	No	101, 103, 104, 107, 108, 109, 111, 112, 114, 116, 117, 118a, 119, 122, 124,
detection Appllied		125, 126, 127
	Yes	106a, 106b, 113, 118b, 123
	Not Indicated	105
Derivatization	Zn, Acid	106a, 113, 118b
PA-NO -> PA	Not Indicated	123
Derivatization prior detection	No	101, 103, 106a , 107, 109, 111, 114, 116, 118a, 119, 122, 124, 126, 127
	Yes	106b, 113, 118b, 123
	Not Indicated	104, 105, 108, 112, 117, 125, 128
Derivatization Agent prior	Tetramethylammoniu	118b
detection	m hydroxide in MeOH	
	Heptafluorobutyrylim	106b
	idazole	
	N-methyl-N-	123
	(trimethylsilyl)-	
	trifluoracetamide	
	Not Indicated	113
Additional derivatization	LiAlH ₄	106b

10.8.4 Raw results submitted by participats

<LOD

Tables presented in this annex are given only for those analytes where at least one participant reported numeric figures or qualitative observation. Other analytes have been omitted. All results are given in μ g/kg, unless otherwise stated

Table 10-51

111

Acetylerucifolin	e	Result, µg/kg										
Lab.Cod	e P/	A/PT/2012/STD	PA/PT/2	PA/PT/2012/SNH		PA/PT/2012/SAH	PA/P1	/2012/NCH	PA/PT/2012/CPM			
106	ia	<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td>positive</td></lod<></td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td>positive</td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td>positive</td></lod<></td></lod<>		<lod< td=""><td>positive</td></lod<>	positive			
Table 10-52												
Senkirkine					Re	sult, μg/kg						
Lab. Code	PA/PT/	2012/STD	PA/PT/2012/SNH		PA/P	T/2012/SAH	PA/PT/20	12/NCH	PA/PT/2012/CPM			
117		<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td>12.11</td></lod<></td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td>12.11</td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td>12.11</td></lod<></td></lod<>		<lod< td=""><td>12.11</td></lod<>	12.11			
125		<lod< td=""><td>1.07</td><td></td><td>22.3</td><td></td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>		1.07		22.3		<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>			
Table 10-53												
Intermedine/Lycops	amine	Result, μg/kg										
Lab. Code		PA/PT/2012/	STD PA/F	PT/2012/S	NH	PA/PT/2012/SA	H PA/P	PA/PT/2012/STD PA/PT/2012/SNH PA/PT/2012/SAH PA/PT/2012/NCH PA/PT/2012/				

<LOD

<LOD

<LOD

10

Table 10-54

Echimidine	Result, µg/kg							
Row Labels	PA/PT/2012/ STD	PA/PT/2012/ SNH	PA/PT/2012/ SAH	PA/PT/2012/ NCH	PA/PT/2012/ CPM			
101	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.5</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.5</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.5</td><td><lod< td=""></lod<></td></lod<>	1.5	<lod< td=""></lod<>			
103	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>			
104	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.7</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.7</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.7</td><td><lod< td=""></lod<></td></lod<>	0.7	<lod< td=""></lod<>			
108	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1</td><td><lod< td=""></lod<></td></lod<>	1	<lod< td=""></lod<>			
109	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""><td><lod< td=""></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""></lod<></td></loq<>	<lod< td=""></lod<>			
112	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.29</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.29</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.29</td><td><lod< td=""></lod<></td></lod<>	1.29	<lod< td=""></lod<>			
116	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.38</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.38</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.38</td><td><lod< td=""></lod<></td></lod<>	1.38	<lod< td=""></lod<>			
121	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.21</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.21</td><td><lod< td=""></lod<></td></lod<>	1.21	<lod< td=""></lod<>			
124	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.48</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.48</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.48</td><td><lod< td=""></lod<></td></lod<>	1.48	<lod< td=""></lod<>			
125	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.21</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.21</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>3.21</td><td><lod< td=""></lod<></td></lod<>	3.21	<lod< td=""></lod<>			
127	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.04</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.04</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.04</td><td><lod< td=""></lod<></td></lod<>	1.04	<lod< td=""></lod<>			
106a	<lod< td=""><td><lod< td=""><td><lod< td=""><td>positive</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>positive</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>positive</td><td><lod< td=""></lod<></td></lod<>	positive	<lod< td=""></lod<>			

Table 10-55

Jacobine	Result, μg/kg					
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SAH	PA/PT/2012/NCH	PA/PT/2012/CPM	
111	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25.4</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25.4</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25.4</td></lod<></td></lod<>	<lod< td=""><td>25.4</td></lod<>	25.4	
117	<lod< td=""><td><lod< td=""><td>4.07</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4.07</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	4.07	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
106a	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Positive</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Positive</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Positive</td></lod<></td></lod<>	<lod< td=""><td>Positive</td></lod<>	Positive	

Table 10-56

Jacobine-N-oxide	Result, µg/kg					
Lab. Code	PA/PT/2012/STD PA/PT/2012/SNH PA/PT/2012/SAH PA/PT/2012/NCH PA/PT/20					
111	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>110.6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>110.6</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>110.6</td></lod<></td></lod<>	<lod< td=""><td>110.6</td></lod<>	110.6	

Table 10-57

Retrorsine	Result, µg/kg					
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SAH	PA/PT/2012/NCH	PA/PT/2012/CPM	
101	313	15	19	45	250	
102	263.57	20.16	22.61	45.36	n/a	
103	186.56	14.09	12.93	25.68	63.68	
104	239.4	25.7	23.6	51.9	59.2	
105	20	30	25	65	23	
107	446.75	140.67	57.37	84.08	110.8	
108	210 μg/l	19.1	18.4	32.8	133	
109	229.6	16.2	16.2	35.8	125.5	
111	229.6	20	12.4	57	121	
112	205.53	14.63	9.16	30.68	125.73	
114	248.38 μg/l	23.57	21.53	42.02	160.91	
116	263.33	23.48	26.01	48.39	203.77	
117	3.95	23.04	28.81	42.26	<lod< td=""></lod<>	
119	76.6	23.4	21.4	55.8	48.8	
120	226	12.3	13.4	25.2	99.9	
121	253 ng/ml	18.8	18.6	37.4	n/a	
122	195.1	15.7	17.2	31.3	67.7	
124	278.75	25.4	24.48	47.6	251.08	
126	3626	220.2	189.5	465.9	<lod< td=""></lod<>	
127	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>756.13</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>756.13</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>756.13</td></lod<></td></lod<>	<lod< td=""><td>756.13</td></lod<>	756.13	
128	270	17.53	17.61	44.5	n/a	
106a	245	26	26	44	316	
118a	0.228 μg/ml	24.76	27.98	44.36	<lod< td=""></lod<>	

Table 10-58

Lycopsamine	Result, µg/kg					
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SAH	PA/PT/2012/NCH	PA/PT/2012/CPM	
101	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8.9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8.9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>8.9</td><td><lod< td=""></lod<></td></lod<>	8.9	<lod< td=""></lod<>	
103	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8.52</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8.52</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>8.52</td><td><lod< td=""></lod<></td></lod<>	8.52	<lod< td=""></lod<>	
104	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.6</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.6</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.6</td><td><lod< td=""></lod<></td></lod<>	2.6	<lod< td=""></lod<>	
105	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>12</td><td><lod< td=""></lod<></td></lod<>	12	<lod< td=""></lod<>	
108	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>6.8</td><td><lod< td=""></lod<></td></lod<>	6.8	<lod< td=""></lod<>	
109	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7.8</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7.8</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>7.8</td><td><lod< td=""></lod<></td></lod<>	7.8	<lod< td=""></lod<>	
112	<lod< td=""><td>0.39</td><td><lod< td=""><td>7.17</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.39	<lod< td=""><td>7.17</td><td><lod< td=""></lod<></td></lod<>	7.17	<lod< td=""></lod<>	
116	<lod< td=""><td><loq< td=""><td><lod< td=""><td>8.71</td><td><lod< td=""></lod<></td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td>8.71</td><td><lod< td=""></lod<></td></lod<></td></loq<>	<lod< td=""><td>8.71</td><td><lod< td=""></lod<></td></lod<>	8.71	<lod< td=""></lod<>	
117	<lod< td=""><td>2.71</td><td>11.54</td><td>6.93</td><td><lod< td=""></lod<></td></lod<>	2.71	11.54	6.93	<lod< td=""></lod<>	
121	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8.77</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8.77</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>8.77</td><td><lod< td=""></lod<></td></lod<>	8.77	<lod< td=""></lod<>	
124	<lod< td=""><td><lod< td=""><td><lod< td=""><td>12.62</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>12.62</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>12.62</td><td><lod< td=""></lod<></td></lod<>	12.62	<lod< td=""></lod<>	
125	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>196.6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>196.6</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>196.6</td></lod<></td></lod<>	<lod< td=""><td>196.6</td></lod<>	196.6	
127	<lod< td=""><td><loq< td=""><td><loq< td=""><td>7.95</td><td><lod< td=""></lod<></td></loq<></td></loq<></td></lod<>	<loq< td=""><td><loq< td=""><td>7.95</td><td><lod< td=""></lod<></td></loq<></td></loq<>	<loq< td=""><td>7.95</td><td><lod< td=""></lod<></td></loq<>	7.95	<lod< td=""></lod<>	
118a	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.77</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.77</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.77</td><td><lod< td=""></lod<></td></lod<>	2.77	<lod< td=""></lod<>	

Table 10-59

Echiumine	Result, µg/kg					
Row Labels	PA/PT/2012/STD PA/PT/2012/SNH PA/PT/2012/SAH PA/PT/2012/NCH				PA/PT/2012/CPM	
106a	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Positive</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Positive</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>Positive</td><td><lod< td=""></lod<></td></lod<>	Positive	<lod< td=""></lod<>	

Table 10-60							
Erucifoline			Result, μg/k	g	/ /		
Row Labels	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/S	SAH	PA/PT/2012/NCH		PA/PT/2012/CPM
	<lod< th=""><th colspan="3"></th><th>2091.3</th></lod<>				2091.3		
Table 10-61			D II //				
Erucifoline-N-oxide		DA /DT /2012 /CNU	Result, µg/k	(g	DA /DT /2012		DA /DT /2012/CDM
ROW Labels	PA/P1/2012/STD	PA/P1/2012/SNH	PA/P1/2012/:		PA/P1/2012		PA/P1/2012/CPM
	<lud< th=""><th><lul< th=""><th></th><th><lud< th=""><th></th><th><lod< th=""><th>31/5.1</th></lod<></th></lud<></th></lul<></th></lud<>	<lul< th=""><th></th><th><lud< th=""><th></th><th><lod< th=""><th>31/5.1</th></lod<></th></lud<></th></lul<>		<lud< th=""><th></th><th><lod< th=""><th>31/5.1</th></lod<></th></lud<>		<lod< th=""><th>31/5.1</th></lod<>	31/5.1
			Desult us/				
Intermedine		DA /DT /2012/SNH	Result, µg/	кg слц			
122	PA/P1/2012/31D		PA/P1/2012/		PA/P1/201	0.22	
Table 10-62				LOD		9.55	
			Pocult ug/	10			
Lab Code	PA/PT/2012/STD	PA/PT/2012/SNH	PΔ/PT/2012/	<u>ку</u> Sдн	PA/PT/201	2/NCH	PA/PT/2012/CPM
111	<100	<)		17,11/201	4.8	127.4
112	<lod< th=""><th>) <loi< th=""><th>)</th><th><lod< th=""><th></th><th>3.54</th><th>166.26</th></lod<></th></loi<></th></lod<>) <loi< th=""><th>)</th><th><lod< th=""><th></th><th>3.54</th><th>166.26</th></lod<></th></loi<>)	<lod< th=""><th></th><th>3.54</th><th>166.26</th></lod<>		3.54	166.26
Table 10-64							
Integerrimine-N-oxide	2		Result ug/	kσ			
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SAH	PA/P	T/2012/NCH	Р	A/PT/2012/CPM
111	<lod< th=""><th><lod< th=""><th><lod< th=""><th></th><th>4.8</th><th></th><th>348.6</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th></th><th>4.8</th><th></th><th>348.6</th></lod<></th></lod<>	<lod< th=""><th></th><th>4.8</th><th></th><th>348.6</th></lod<>		4.8		348.6
Table 10-65							
Retrorsine-N-oxide			Result. ug/	kρ			
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/	SAH	PA/PT/201	2/NCH	PA/PT/2012/CPM
102	<lod< th=""><th>> <loi< th=""><th>D</th><th><lod< th=""><th>, , , _ J _ J _ J</th><th><lod< th=""><th>n/a</th></lod<></th></lod<></th></loi<></th></lod<>	> <loi< th=""><th>D</th><th><lod< th=""><th>, , , _ J _ J _ J</th><th><lod< th=""><th>n/a</th></lod<></th></lod<></th></loi<>	D	<lod< th=""><th>, , , _ J _ J _ J</th><th><lod< th=""><th>n/a</th></lod<></th></lod<>	, , , _ J _ J _ J	<lod< th=""><th>n/a</th></lod<>	n/a
103	<lod< th=""><th>> <loi< th=""><th>2</th><th><lod< th=""><th></th><th><lod< th=""><th>159.64</th></lod<></th></lod<></th></loi<></th></lod<>	> <loi< th=""><th>2</th><th><lod< th=""><th></th><th><lod< th=""><th>159.64</th></lod<></th></lod<></th></loi<>	2	<lod< th=""><th></th><th><lod< th=""><th>159.64</th></lod<></th></lod<>		<lod< th=""><th>159.64</th></lod<>	159.64
104	<lod< th=""><th><lo0< th=""><th>2</th><th><lod< th=""><th></th><th><loq< th=""><th>354.1</th></loq<></th></lod<></th></lo0<></th></lod<>	<lo0< th=""><th>2</th><th><lod< th=""><th></th><th><loq< th=""><th>354.1</th></loq<></th></lod<></th></lo0<>	2	<lod< th=""><th></th><th><loq< th=""><th>354.1</th></loq<></th></lod<>		<loq< th=""><th>354.1</th></loq<>	354.1
107	<lod< th=""><th>> <loi< th=""><th></th><th><lod< th=""><th></th><th><lod< th=""><th>349.2</th></lod<></th></lod<></th></loi<></th></lod<>	> <loi< th=""><th></th><th><lod< th=""><th></th><th><lod< th=""><th>349.2</th></lod<></th></lod<></th></loi<>		<lod< th=""><th></th><th><lod< th=""><th>349.2</th></lod<></th></lod<>		<lod< th=""><th>349.2</th></lod<>	349.2
108	<lod< th=""><th><lo0< th=""><th>2</th><th><lod< th=""><th></th><th><lod< th=""><th>168</th></lod<></th></lod<></th></lo0<></th></lod<>	<lo0< th=""><th>2</th><th><lod< th=""><th></th><th><lod< th=""><th>168</th></lod<></th></lod<></th></lo0<>	2	<lod< th=""><th></th><th><lod< th=""><th>168</th></lod<></th></lod<>		<lod< th=""><th>168</th></lod<>	168
109	<lod< th=""><th>> <loi< th=""><th>2</th><th><lod< th=""><th></th><th><lod< th=""><th>321</th></lod<></th></lod<></th></loi<></th></lod<>	> <loi< th=""><th>2</th><th><lod< th=""><th></th><th><lod< th=""><th>321</th></lod<></th></lod<></th></loi<>	2	<lod< th=""><th></th><th><lod< th=""><th>321</th></lod<></th></lod<>		<lod< th=""><th>321</th></lod<>	321
111	<lod< th=""><th><pre>> <loi< pre=""></loi<></pre></th><th>)</th><th><lod< th=""><th></th><th><lod< th=""><th>324.3</th></lod<></th></lod<></th></lod<>	<pre>> <loi< pre=""></loi<></pre>)	<lod< th=""><th></th><th><lod< th=""><th>324.3</th></lod<></th></lod<>		<lod< th=""><th>324.3</th></lod<>	324.3
112	6.3	0.6	6	<lod< th=""><th></th><th><lod< th=""><th>196.87</th></lod<></th></lod<>		<lod< th=""><th>196.87</th></lod<>	196.87
119	<lod< th=""><th>1.</th><th>7</th><th>2.67</th><th></th><th>2.01</th><th>169.8</th></lod<>	1.	7	2.67		2.01	169.8
120	<lul 22 ng/m</lul 	<loi< th=""><th></th><th><lod< th=""><th></th><th><lod< th=""><th>323.6</th></lod<></th></lod<></th></loi<>		<lod< th=""><th></th><th><lod< th=""><th>323.6</th></lod<></th></lod<>		<lod< th=""><th>323.6</th></lod<>	323.6
121	32 lig/iii						11/d 200 22
Table 10-66				NLOD		LOD	200.75
Piddolliipo			Pocult ug/	10			
		DV/DT/2012/2014		Kg DA/D		D	A /DT /2012 /CDNA
111	<100	<100	<10D	ТАТ	11 6	•	30
112	6.68	0.69	0.56		9.58		29.97
Table 10-67							
Riddellijne-N-oxide			Result, ug/kg	i			
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SA	, AH	PA/PT/2012	/NCH	PA/PT/2012/CPM
111	<lod< th=""><th><lod< th=""><th><</th><th>LOD</th><th></th><th>11.6</th><th>65.4</th></lod<></th></lod<>	<lod< th=""><th><</th><th>LOD</th><th></th><th>11.6</th><th>65.4</th></lod<>	<	LOD		11.6	65.4
Table 10-68							
Senecionine			Result, µg/kg	ŗ			
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SA	١H	PA/PT/2012	/NCH	PA/PT/2012/CPM
101	351	12		19		31	825
102	256.8	18.11	1	9.26		44.56	n/a
103	211.37	15.94	1	4.59		30.49	464.31
104	262.7	27.7		28.2		55.5	743.2
105	9	20	- -	23		50	85
107	254.05 167 ug/l	<u>3U.72</u> Q 1	3	9.20		52.07 22 7	309.8 500
109	107 μg/1 226 Λ	0.1		16.8		23.7 47	528 782 /
103	220.4	18.8		12.1		33.9	690.2
112	58.38	10.64		8.91		22.7	506.12
114	231.45 μg/l	21.73	2	2.55		47.09	914.96
116	297.17	25.64	2	7.93		55.93	890.09
117	9.02	19.93	2	2.89		35.26	223.94
119	100.8	19.9		17		45.1	190.4
120	245	14.9		18.5		27.4	495.8
121	195 ng/ml	15.4		15.2		29.6	n/a
122	222.6	17.6		14.6		31.8	359.5
124	269.25	22.64		22.6		48.08	1189.23
125	0.08 μg/ml	1.69		0.38		<lod< th=""><th>996.37</th></lod<>	996.37
126	2460	116.2	1	10.6		390.5	6480
127	210 μg/ml	19.56	1	13.0		37.14	610.27
106a	232.7	13.83		27		39.05 20	11/a
118a	0.229 ug/ml	20	2	4.03		55.27	
				1			

Table 10-69

Senecionine –N-Oxide			Result, µg/kg		
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SAH	PA/PT/2012/NCH	PA/PT/2012/CPM
102	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<>	<lod< td=""><td>n/a</td></lod<>	n/a
103	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>970.24</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>970.24</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>970.24</td></lod<></td></lod<>	<lod< td=""><td>970.24</td></lod<>	970.24
104	<lod< td=""><td><loq< td=""><td><lod< td=""><td>1.8</td><td>1678.2</td></lod<></td></loq<></td></lod<>	<loq< td=""><td><lod< td=""><td>1.8</td><td>1678.2</td></lod<></td></loq<>	<lod< td=""><td>1.8</td><td>1678.2</td></lod<>	1.8	1678.2
105	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
107	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1776</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1776</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1776</td></lod<></td></lod<>	<lod< td=""><td>1776</td></lod<>	1776
108	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1440</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1440</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1440</td></lod<></td></lod<>	<lod< td=""><td>1440</td></lod<>	1440
109	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1514</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1514</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1514</td></lod<></td></lod<>	<lod< td=""><td>1514</td></lod<>	1514
111	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1670.1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1670.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1670.1</td></lod<></td></lod<>	<lod< td=""><td>1670.1</td></lod<>	1670.1
112	3.04	0.74	0.59	<lod< td=""><td>839.57</td></lod<>	839.57
117	<lod< td=""><td><lod< td=""><td>5.54</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.54</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	5.54	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
119	<lod< td=""><td>1.17</td><td>1.91</td><td>1.24</td><td>158.6</td></lod<>	1.17	1.91	1.24	158.6
120	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2742</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2742</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2742</td></lod<></td></lod<>	<lod< td=""><td>2742</td></lod<>	2742
121	20.7	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<>	<lod< td=""><td>n/a</td></lod<>	n/a
125	<lod< td=""><td>0.91</td><td>0.66</td><td><lod< td=""><td>441.46</td></lod<></td></lod<>	0.91	0.66	<lod< td=""><td>441.46</td></lod<>	441.46
126	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20160</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20160</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20160</td></lod<></td></lod<>	<lod< td=""><td>20160</td></lod<>	20160
127	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1496.53</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1496.53</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1496.53</td></lod<></td></lod<>	<lod< td=""><td>1496.53</td></lod<>	1496.53
118a	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>655.65</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>655.65</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>655.65</td></lod<></td></lod<>	<lod< td=""><td>655.65</td></lod<>	655.65

Table 10-70

Seneciphylline	Result, μg/kg						
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SAH	PA/PT/2012/NCH	PA/PT/2012/CPM		
101	737	40	46	32	483		
102	422.9	29.95	33.92	29.58	n/a		
103	418.84	32.25	32.7	27.02	318.92		
104	372.5	39.3	39.9	32.6	327		
105	15	45	40	38	80		
107	875	89.39	108.37	55.03	378		
108	480 μg/l	43.4	39.7	39	334		
109	391.9	29	30.3	28.2	484.5		
111	497.6	44	26	38.6	531		
112	97.52	25.97	24.22	24.46	487.21		
114	3530.97	36.97	39.26	35.09	572.58		
116	510.83	41.89	45.95	36.03	473.32		
117	13.45	68.4	70.97	45.3	557.46		
119	192.3	100.3	90.6	54.4	336.8		
120	478	33.3	39.6	27.4	746.9		
121	361 ng/ml	27.7	27.2	24.2	n/a		
122	383.1	27.5	24.8	24.9	162		
124	536.25	45.32	45.68	37.48	609.71		
125	1.41 μg/ml	49.97	24.52	66.68	645.95		
126	7438.1	452.3	429.1	440.50	5096.8		
127	470 μg/ml	41.74	40.57	31.6	379.13		
128	516.35	28.75	30.07	20.63	n/a		
106a	456	47	47	20	745		
118a	0.535 μg/ml	45.95	47.15	42.1	534.59		

Table 10-71

Seneciphylline-N-oxide	Result, μg/kg					
Lab. Code	PA/PT/2012/STD	PA/PT/2012/SNH	PA/PT/2012/SAH	PA/PT/2012/NCH	PA/PT/2012/CPM	
102	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<>	<lod< td=""><td>n/a</td></lod<>	n/a	
103	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>505.58</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>505.58</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>505.58</td></lod<></td></lod<>	<lod< td=""><td>505.58</td></lod<>	505.58	
104	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>718.6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>718.6</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>718.6</td></lod<></td></lod<>	<lod< td=""><td>718.6</td></lod<>	718.6	
105	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>	
107	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1069.2</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1069.2</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1069.2</td></lod<></td></lod<>	<lod< td=""><td>1069.2</td></lod<>	1069.2	
108	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>410</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>410</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>410</td></lod<></td></lod<>	<lod< td=""><td>410</td></lod<>	410	
109	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>824.5</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>824.5</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>824.5</td></lod<></td></lod<>	<lod< td=""><td>824.5</td></lod<>	824.5	
111	<lod< td=""><td><lod< td=""><td>2.3</td><td><lod< td=""><td>1214.4</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.3</td><td><lod< td=""><td>1214.4</td></lod<></td></lod<>	2.3	<lod< td=""><td>1214.4</td></lod<>	1214.4	
112	4.61	1.21	1.55	<lod< td=""><td>504.86</td></lod<>	504.86	
117	<lod< td=""><td>11.55</td><td>19.02</td><td>3.46</td><td>1175.47</td></lod<>	11.55	19.02	3.46	1175.47	
119	<lod< td=""><td>3.21</td><td>6.88</td><td>2.57</td><td>789.3</td></lod<>	3.21	6.88	2.57	789.3	
120	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1123</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1123</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1123</td></lod<></td></lod<>	<lod< td=""><td>1123</td></lod<>	1123	
121	38 ng/ml	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n/a</td></lod<></td></lod<>	<lod< td=""><td>n/a</td></lod<>	n/a	
125	<lod< td=""><td>4.55</td><td>4.29</td><td>13.82</td><td>300.13</td></lod<>	4.55	4.29	13.82	300.13	
126	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8588</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8588</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8588</td></lod<></td></lod<>	<lod< td=""><td>8588</td></lod<>	8588	
127	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>807.73</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>807.73</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>807.73</td></lod<></td></lod<>	<lod< td=""><td>807.73</td></lod<>	807.73	
118a	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>305.9</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>305.9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>305.9</td></lod<></td></lod<>	<lod< td=""><td>305.9</td></lod<>	305.9	

European Commission EUR 26235 EN – DG Joint Research Centre – Institute for Reference Materials and Measurements

Title: Report on the 2012 Proficiency Test on pyrrolizidine alkaloids in honey and hay

Authors: Vytautas Tamošiūnas¹, Carsten Mischke¹ , Patrick P.J. Mulder², Joerg Stroka¹

(1: European Commission, DG Joint Research Centre - Institute for Reference Materials and Measurements, Geel, Belgium

²: RIKILT, Institute for Food Safety, Wageningen University and Research Centre , Wageningen, Netherlands)

Luxembourg: Publications Office of the European Union

2013 – 77 pp. – 21.0 x 29.7 cm

EUR - Scientific and Technical Research series - ISSN 1831-9424 (online)

ISBN 978-92-79-33877-9 (pdf)

doi:10.2787/83856

Abstract

The purpose of this proficiency test was to investigate the current measurement capacities of testing laboratories for pyrroliazidine alkaloids in honey and plant materials. The scheme consisted of two parts: Benchmarking performance of laboratories against known estimates of pyrrolizidine alkaloids in the samples and checking for methodological differences while measuring naturally contaminated materials.

Twenty-eight laboratories expressed their will to participate and analysed multiple analytes in several test samples of honey and plant material.

The analysis of spiked honey showed no statistical differences between determining a common sum parameter for alkaloids and individual determination. A significant difference has been found however for of naturally contaminated materials. Individual alkaloid determination showed significantly lower results, possibly because of the presence of substances contributing to the sum parameter that were not in the scopes of the methods applied as well as lack of standard materials available on the market.

Satisfactory performance for all of analytes has been achieved by more than half of participants analysing for both: sum parameter, and alkaloids analysed individually.

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new standards, methods and tools, and sharing and transferring its know-how to the Member States and international community.

Key policy areas include: environment and climate change; energy and transport; agriculture and food security; health and consumer protection; information society and digital agenda; safety and security including nuclear; all supported through a cross-cutting and multi-disciplinary approach.

