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EXECUTIVE SUMMARY 

Aim To develop a consistent quantitative stratification of the land surface of the world into relatively 

homogeneous bioclimate strata to provide a global spatial framework for the integration and analysis 

of ecological and environmental data. Methods A broad set of climate-related variables were 

considered for inclusion into a quantitative model which partitions geographic space into bioclimate 

regions. Statistical screening produced a subset of relevant bioclimate variables, which were further 

compacted into fewer independent dimensions using Principal Components Analysis (PCA). An 

ISODATA clustering routine was then used to classify the principal components into relatively 

homogenous environmental strata. The strata were aggregated into global environmental zones based 

on the attribute distances between strata to provide structure and support a consistent nomenclature. 

Results The Global Environmental Stratification (GEnS) consists of 125 strata, which have been 

aggregated into eighteen global environmental zones. The stratification has a 30 arcsec resolution 

(equivalent to 0.86 km2 at the equator). Aggregations of the strata were compared to nine existing 

global, continental and national bioclimate and ecosystem classifications using the Kappa statistic. 

Values range between 0.54 and 0.72, indicating good agreement in ecosystem patterns between 

existing maps and the GEnS.  Main conclusions The Global Environmental Stratification has been 

constructed using rigorous statistical procedures. It provides a robust spatial analytical framework for 

the aggregation of local observations, identification of gaps in current monitoring efforts, and 

systematic design of complementary and new monitoring and research. The GEnS has potential to 

support global environmental assessments, and has been identified as a focal geospatial data resource 

for tasks of the recently launched Group on Earth Observation Biodiversity Observation Network 

(GEO BON).  

This deliverable has been submitted for publication in the peer reviewed journal on 21 January 2011: 

Metgzer MJ, Bunce RGH, Jongman RHG, Sayre R, Trabucco A, Zomer R (submitted manuscript) A 

high resolution bioclimate map of the world: a unifying framework for global biodiversity research. 

Manuscript submitted to Global Ecology and Biogeography. 
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INTRODUCTION 

There is growing urgency for integration and coordination of global environmental and biodiversity 

data required to respond to the ‘grand challenges’ the planet is facing, including climate change and 

biodiversity decline (Parr et al., 2003; MA 2005; Pereira & Cooper, 2006; Scholes et al., 2008; 

Mooney et al., 2009; Metzger et al., 2010; Pereira et al., 2010). On-going and new programmes are 

gathering valuable data through a profusion of projects at regional, national and international scales, 

e.g. the Long Term Ecological Research (LTER) programmes (Parr et al., 2003), and activities related 

to the Global Earth Observation System of Systems (GEOSS; e.g. Muchoney, 2008). Nevertheless, 

major challenges remain, e.g. data aggregation across scales, consistent monitoring of global 

biodiversity change, and linking in situ and earth observations (Bunce et al., 2008; Scholes et al., 

2008; GEOBON, 2010). Progress in these fields is essential to improve future assessments and policy 

targets relating to the stock and change of global ecosystem resources and biodiversity (Scholes et al., 

2008), including the recently launched Intergovernmental Science-Policy Platform on Biodiversity and 

Ecosystem Services (IPBES; Larigauderie & Mooney, 2010) and the United Nations Convention on 

Biological Diversity (CBD) Aichi targets (Nayar, 2010). 

A consistent classification, or stratification1, of land into relatively homogenous strata provides a 

valuable spatial framework for comparison and analysis of ecological and environmental data across 

large heterogeneous areas (Paruelo et al., 1995; Lugo et al., 1999; Mcmahon et al., 2001; Leathwick et 

al., 2003; Metzger et al., 2005). A global stratification system would provide a flexible instrument in 

the coordination and analysis of global biodiversity observation efforts (Paruelo et al., 1995; Lugo et 

al., 1999; Leathwick et al., 2003; Pereira & Cooper, 2006), e.g. for targeting research and monitoring 

efforts (cf Metzger et al., 2010), aggregating observations (cf Firbank et al., 2003), and for the 

comparison of trends within similar environments (cf Mooney, 1977) and between strata (cf the biome 

comparisons in the Millennium Ecosystem Assessment (MA, 2005)). Environmental stratifications can 

also form a framework for systematic global biodiversity conservation management (Margules & 

Pressey, 2000; Olson et al., 2001; Leathwick et al., 2003). A robust global stratification into 

ecologically representative areas will be crucial under the CBD Aichi targets to increase terrestrial 

nature reserves from 13% to 17% of the world’s land area by 2020 (Nayar, 2010). Finally, it would 

provide a valuable tool for environmental assessments (e.g. IPBES), and global or continental scale 

agro-ecological and rural development studies. 

In the global and continental context, climate is the main determinant of ecosystem and environmental 

patterns (Walter & Lieth, 1964; Odum, 1983; Klijn & De Haes, 1994; Godron, 1994), and climatically 

                                                
1 When classes are not meant as descriptive units, but specifically designed to divide gradients into relatively 
homogeneous subpopulations we prefer to use the statistical term stratification. 
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similar areas can be interpreted as having similar potentials to support ecosystems (Klijn & De Haes, 

1994; Paruelo et al., 1995; Metzger et al., 2005). Broad climate classifications, as expressions of the 

environment, were first developed by the ancient Greeks (Sanderson, 1999), but saw a proliferation in 

the late 19th and first half of the 20th century when scientists sought to explain the diversity in 

vegetation they encountered on their travels (Von Humboldt, 1867; Köppen, 1900; Holdridge, 1947; 

Thornthwaite, 1948). More recently, bioclimate biome classifications have been used to underpin 

dynamic global vegetation models (Prentice et al., 1992; Sitch et al., 2003). However, these 

classifications provide limited regional detail by distinguishing only 10-30 classes globally, and with 

generally coarse spatial resolutions. More detailed approaches to distinguish global ecoregions 

(Bailey, 1998; Olson et al., 2001) rely heavily on expert judgement for interpreting class divisions, 

making it difficult to ensure reliability across the world (Lugo et al., 1999; Metzger et al., 2005). 

By contrast, statistical methods ensure consistency and the resulting stratifications are reproducible 

and, as far as possible, independent of personal bias (Leathwick et al., 2003; Jongman et al., 2006). 

This is of particular importance where large-scale continuous gradients are involved over thousands of 

kilometres. No clear boundaries between zones are present in such cases, but statistical methods 

provide robust divisions based on the balance between the input variables in the analysis. Multivariate 

clustering of climate data has proved successful in creating more detailed stratifications in many parts 

of the world (e.g. in Great Britain (Bunce et al., 1996a; Bunce et al., 1996b), Europe (Metzger et al., 

2005; Jongman et al., 2006) New Zealand (Leathwick et al., 2003) and Senegal (Tappan et al., 2004)). 

These datasets have been used for stratified random sampling of ecological resources (Firbank et al., 

2003; Bunce et al., 2008), the selection of representative study sites (Palma et al., 2007), and summary 

reporting of trends and impacts (Thuiller et al., 2005; Metzger et al., 2008b). The stratifications are 

also flexible, and can be adapted for specific analyses or objectives (Hazeu et al., 2010). Nevertheless, 

no high resolution global bioclimate classification derived from multivariate statistical clustering has 

been constructed until now. 

This paper presents a novel Global Environmental Stratification (GEnS), distinguishing 125 strata and 

eighteen zones with 30 arcsec resolution (0.93 x 0.93 = 0.86 km2 at the equator). The stratification is 

based on statistical clustering so that subjective choices are explicit, their implications are understood, 

and the strata can be seen in the global context. The dataset will form a global unifying framework 

within the Group on Earth Observations Biodiversity Observation Network2 (GEO BON; Scholes et 

al., 2008; GEOBON, 2010), and will be publicly available to support global ecosystem research. 

                                                
2 http://www.earthobservations.org/geobon.shtml 
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DATA 

Bioclimate indicators 

When constructing a global climate classification the use of monthly indicators (cf Bunce et al., 

1996a; Metzger et al., 2005) is problematic due to the contrasting seasonality between hemispheres. 

Bioclimate indicators, which directly influence plant growth, overcome these problems. Furthermore, 

such indicators are directly related to plant physiological processes determining primary productivity 

and therefore also directly influence provisional ecosystem services (e.g. food, fibre, and bio-energy 

production). A suite of bioclimate indicators has been developed, whose origin can be traced to 

Köppen (1900).  

Köppen used observed vegetation patterns to subdivide five global climate zones into thirty classes 

based on various temperature and precipitation related indicators, but various elements lack 

phytogeographic foundation (Thornthwaite, 1943; Sanderson, 1999). Thornthwaite stressed the 

importance of including better measures to represent seasonality and plant available moisture 

(Thornthwaite, 1943), developing a classification based on humidity and aridity indices (Thornthwaite, 

1948). Meanwhile Holdridge (1947) devised a life zone system using a three dimensional bioclimate 

classification based on biotemperature, precipitation and an aridity index, and Emberger (1930) 

developed a tailored pluviothermic indicator for distinguishing climate zones in the Mediterranean. 

The latter is still used as a proxy for effective precipitation when data for evaporation is not available 

(Cabido et al., 2008). Although there have been several more recent classifications using bioclimate 

indicators to model terrestrial ecosystem distributions (e.g. Bailey, 1998; Sayre et al., 2009), they are 

now mainly used in modelling climate change impacts on vegetation (e.g. Cramer et al., 2001; Sitch et 

al., 2003; Thuiller et al., 2005). 

For this paper, several of the most important and contrasting methods have been reviewed to identify 

relevant bioclimate indicators. The resulting list (Table 1) is not exhaustive, but provides a wide range 

of relevant indicators that can be calculated using available climate datasets, which can then be 

analysed by statistical screening.  

Datasets 

Global spatial climate data is available from several sources, but in this paper the WorldClim Global 

Climate Dataset was used (Hijmans et al., 2005). WorldClim has the greatest spatial resolution (30 

arcsec, approximately 1km2), enabling representation of regional environmental gradients, which 

dissolve at coarser resolutions, particularly in mountainous and other areas with steep climate 

gradients (Hijmans et al., 2005; Hazeu et al., 2010).  
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The WorldClim dataset (version 1.4) was created by spatial interpolation of climate observations from 

over 45,000 weather stations obtained from major climate databases. ANUSPLIN software was used 

to calculate thin plate smoothing splines using the latitude, longitude and elevation as independent 

variables (Hutchinson, 1998a; Hutchinson, 1998b). Variables included are monthly total precipitation, 

monthly mean, minimum and maximum temperature, and nineteen derived bioclimate variables (see 

Table 1). The data are available for download from http://www.worldclim.org as ERSI raster files with 

over 222.3 million 30 arcsec grid cells. Hijmans et al. (2005) provide a detailed description of the 

dataset construction. 

Moisture availability is a crucial determinant for plant growth (Thornthwaite, 1943; Thornthwaite, 

1948; Prentice et al., 1992), but is not represented in WorldClim. However, several suitable indicators 

have been calculated from WorldClim data by the Consultative Group for International Agriculture 

Research Consortium for Spatial Information (CGIAR-CSI; Zomer et al., 2008; Trabucco et al., 2008) 

and were included in the analysis. These include: Potential EvapoTranspiration (PET), calculated 

using the Hargreaves method; an Aridity Index expressing the ratio between annual precipitation and 

PET; and Actual EvapoTranspiration (AET) calculated for a fixed soil water holding capacity and 

generalised vegetation coefficients (Trabucco et al., 2008). 

An additional eighteen bioclimate variables, identified by reviewing earlier studies, have been 

calculated using the available data, including those reflecting the growing season (cf Prentice et al., 

1992; Sitch et al., 2003), a specific indicator developed for the Mediterranean (Emberger, 1930), and 

additional indicators used to distinguish isoclimate regions (Sayre et al., 2009). Finally, altitude (Jarvis 

et al., 2008) and clear-sky solar radiation (cf Allen et al., 1998) were included following Leathwick et 

al. (2003). Table 1 provides an overview of the forty-two variables, and Appendix 1 explains the 

calculation of the eighteen new variables. To avoid negative numbers in subsequent calculations all 

temperature variables were converted to K.  

 



Table 1. Overview of the forty-two bioclimate variables that were screened to derive a subset for the statistical clustering, and their use in other classifications (A-I). WorldClim data are 

described in Hijmans et al. (2005), CGIAR-CSI data in Trabucco et al. (2008) and Zomer et al. (2008), and the newly calculated indicators in Appendix 1. * denotes that the variable was 

calculated from the existing datasets. ~ denotes that a very similar variable was used. 
Indicator Source Unit A B C D E F G H I

ind_1 Annual mean T WorldClim °C X X X X

ind_2 Mean diurnal range WorldClim °C X

ind_3 Isothermality WorldClim °C X

ind_4 T seasonality WorldClim -

ind_5 Maximum T of the warmest month WorldClim °C X

ind_6 Minimum T of the coldest month WorldClim °C X X X X

ind_7 Annual T range WorldClim °C

ind_8 Mean T of the wettest quarter WorldClim °C

ind_9 Mean T of the driest quarter WorldClim °C X

ind_10 Mean T of the warmest quarter WorldClim °C ~

ind_11 Mean T of the coldest quarter WorldClim °C

ind_12 T sums when mean monthly T > 0°C WorldClim* °C ~ X ~ ~

ind_13 T sums when mean monthly T > 5°C WorldClim* °C ~ ~ ~

ind_14 Mean T of the coldest month WorldClim* °C X X X

ind_15 Mean T of the warmest month WorldClim* °C X X

ind_16 Maximum T of the coldest month WorldClim* °C X X

ind_17 Minimum T of the warmest month WorldClim* °C X

ind_18 Number of months with mean T > 10°C WorldClim* - X

ind_19 Thermicity index WorldClim* °C X

ind_20 Annual precipitation WorldClim mm X X X X

ind_21 Precipitation of the wettest month WorldClim mm

ind_22 Precipitation of the driest month WorldClim mm X

ind_23 Precipitation seasonality WorldClim -

ind_24 Precipitation of the wettest quarter WorldClim mm X

ind_25 Precipitation of the driest quarter WorldClim mm X

ind_26 Precipitation of the warmest quarter WorldClim mm ~ X

ind_27 Precipitation of the coldest quarter WorldClim mm X

ind_28 Minimum June July August precipitation WorldClim* mm ~

ind_29 Maximum June July August precipitation WorldClim* mm ~

ind_30 Minimum December January February precipitation WorldClim* mm ~

ind_31 Maximum December January February precipitation WorldClim* mm ~

ind_32 Total precipitation for months with mean T > 0°C WorldClim* mm X

ind_33 Annual actual evapotranspiration CGIAR-CSI mm/day

ind_34 Annual potential evapostranspiration CGIAR-CSI mm/day X X

ind_35 Coefficient of annual moisture availability CGIAR-CSI* - X ~

ind_36 Aridity Index CGIAR-CSI - X X ~

ind_37 PET seasonality CGIAR-CSI* -

ind_38 Thornthwaite humidity index WorldClim-CGIAR-CSI* - X X

ind_39 Thornthwaite aridity index WorldClim-CGIAR-CSI* - X ~

ind_40 Emberger’s pluviothermic quotient WorldClim* - X

ind_41 Annual solar radiation CGIAR-CSI evaporation equivalent in mm/day ~

ind_42 Altitude WorldClim m  



CONSTRUCTING THE STRATIFICATION 

The construction of the stratification consisted of three stages. Firstly, the initial pool of forty-two 

variables was screened to remove those variables with very high correlations and select a subset of 

variables that represent the dominant global gradients. The second stage entailed the actual statistical 

clustering. Finally, post-processing has made the dataset more accessible, including the development 

of a consistent nomenclature, an appropriate map legend and an aggregation scheme to distinguish 

global environmental zones. The detailed steps of the complete procedure are summarised in Fig. 1. 

Unless stated differently, all calculations were performed using ESRI ArcGIS 9.2 software. 

 

Figure 1. Flowchart illustrating the procedure for constructing the global environmental stratification. 

Pool of potential variables 

Subset 1 

Subset 2 

1. Screening 

2. Clustering 

Subset based on correlation matrix 

Subset based on eigen matrix 

Three Principal Components 

125 strata 

Principal Components Analysis 

ISODATA clustering 

3. Post-processing 

Final dataset 

Adjust map projection 
Develop legend 

Develop aggregation to zones 
Develop nomenclature 
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Screening of the variables 

High correlation is likely between many of the variables listed in Table 1. To prevent the classification 

being weighted to the most common or correlated variables, a subset of the forty-two variables was 

used in the clustering procedure (cf Bunce et al., 1996c). Firstly, a correlation matrix was calculated to 

identify highly correlated variables. For variables with a Pearson’s correlation coefficient of 1.00 the 

variable that was most easily interpreted ecologically was selected and any other variables omitted 

from further analysis. Principal Components Analysis (PCA) was performed on the remaining list to 

identify those variables that did not represent dominant trends in the data. All variables with 

eigenvector loadings <0.1 in the first three principal components were removed from the further 

analysis. The eigenmatrix was calculated using ERDAS IMAGINE 10.0. 

Clustering 

The classification of the final list of screened variables followed the approach used by Metzger et al. 

(2005) in constructing the environmental stratification for Europe. PCA was used once more to reduce 

the subset of input variables into a set of fewer dimensions that are non-correlated and independent 

and are more readily interpretable than the source data (Faust, 1989; Jensen, 1996). The first three 

principal components were subsequently used in the statistical clustering algorithm to distinguish 125 

classes in the data, an arbitrary choice that still permits characterisation and interpretation of the strata, 

whilst providing far greater detail than existing approaches. 

The Iterative Self-Organizing Data Analysis Technique (ISODATA) (Tou & Conzalez, 1974) was 

used to cluster the principal components into environmental strata. This technique is used widely in 

image analysis fields, such as remote sensing and medical sciences (e.g. Banchmann et al., 2002; Pan 

et al., 2003). ISODATA is iterative in that it repeatedly performs an entire classification and 

recalculates statistics. Self-organizing refers to the way in which it locates clusters with minimum user 

input. The ISODATA method uses minimum Euclidean distance in the multi-dimensional feature 

space of the principal components to assign a class to each candidate grid cell.  

Post-processing 

The source data have a geographic latitude-longitude coordinate system, which renders serious shape 

and area distortion. For analytical purposes, where equal area representation is important, the dataset 

was resampled to a 1km2 Mollweide equal area projection.  For presentation purposes, the 

stratification was projected to Winkel Tripel. This projection produces very small distance errors, 

small combinations of ellipticity and area errors, and exhibits the least skewness of any map projection 
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(Goldberg & Gott, 2007), and is also commonly used by the United States National Geographic 

Society.  

To provide structure and support the development of a consistent nomenclature, as well as to facilitate 

summarising and reporting, it is useful to consistently aggregate the strata to a limited set of 

environmental zones (Bunce et al., 1996a; Leathwick et al., 2003; Metzger et al., 2005). The 

dendrogram tool in ArcGIS was used to derive a hierarchical diagram showing the attribute distances 

between strata, thus illustrating the order in which the dataset progressively combines similar 

environments into larger groups. The dendrogram was then used to determine the aggregation of the 

125 strata into fifteen to twenty Global Environmental Zones (GEnZs). 

The GEnZs were ordered based on the mean values of their principal component scores using the dendrogram and assigned 

letters starting with ‘A’ for the zone with the lowest value. Likewise, within each GEnZ its strata were numbered by mean 

first principal component (PC1) score, assigning ‘1’ to the lowest value. The strata were then assigned a unique code based 

on the combination of the letter (GEnZ) and number (e.g. A1 or D6). In addition, consistent descriptive names were 

attributed based on the dominant classification variables, as detailed in the results section. Finally, a legend was developed 

for the strata based on the mean scores of first three components in each stratum (cf Hargrove & Hoffman, 1999; Leathwick 

et al., 2003).  

Comparison with existing classifications 

The reliability of the patterns derived by the statistical clustering can be tested by comparing them to 

other datasets. This is not straightforward, because comparable datasets may not exist or have been 

created in a more subjective manner (Lugo et al., 1999; Metzger et al., 2005). Differences between 

datasets could therefore reflect differences in methodology and objectives, rather than illustrating the 

strength or weakness of any new classification (Hazeu et al., 2010). Nevertheless, it is important to 

demonstrate that the GEnS distinguishes recognised environmental divisions as evidenced by high 

correlations with independent datasets. The strength of agreement between the GEnS and nine global, 

continental and national climate classifications was therefore determined by calculating Kappa 

statistics (Monserud & Leemans, 1992). This is identical to the approach used by Lugo et al. (1999) to 

‘verify and evaluate’ their classification for the United States.  

For the Kappa analysis, the datasets that are compared must have the same spatial resolution and 

distinguish the same classes. To meet these requirements, the classifications were resampled and 

projected to the Mollweide equal area projection, and the two classifications were clipped to the 

largest overlapping extent. A contingency matrix was calculated to determine the best way to 

aggregate the strata. Kappa could then be calculated using the Map Comparison Kit (Visser & De Nijs, 

2006). The alternative classifications used in this comparison were: the biomes used to underpin the 
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World Wildlife Fund (WWF) ecoregions (Olson et al., 2001); a recently updated Köppen map of the 

world (Peel et al., 2007); the European Environmental Stratification (Metzger et al., 2005); isoclimate 

maps for the United States (Sayre et al., 2009), South America (Sayre et al., 2008) and Africa (Sayre 

et al., in prep.); the ecoregions map of the United States (CEC, 1997); the land classification of Great 

Britain (Bunce et al., 1996a); and a geoclimate stratification of Spain (Regato et al., 1999).  

Finally, it was important to explore how the greater detail of the 125 GEnS strata compared spatially with two existing global 

classifications. The relation between the area of 202 countries and the number of strata in the 125 GEnS, the thirty Köppen 

climate classes (Peel et al., 2007), and the fourteen WWF biomes (Olson et al., 2001) was plotted, and the 

correlation between the classifications calculated. Similar graphs and high correlations would indicate 

that the GEnS provides greater detail within recognised climate zones, while deviations would identify 

possible biases towards specific regions.  

RESULTS 

The correlation matrix of the forty-two variables listed in Table 1, which is presented in Appendix 2, 

confirmed that there were high correlations globally among many variables. There were ten variables 

with a correlation coefficient of 1.00 (Table 2). From these variables a subset of four readily 

interpretable variables was chosen for inclusion in the further analysis: minimum temperature of the 

coldest month; mean temperature of the warmest month; maximum temperature of the coldest month; 

and temperature sums when mean monthly temperature is above 0°C.  

The subsequent PCA on the remaining thirty-five variables revealed that the first three components, 

explaining 99.9% of the total variation, were determined by only four variables (Table 3): annual 

temperature sums above 0°C, reflecting latitudinal and altitudinal temperature gradients; the Aridity 

Index, which forms an expression of plant available moisture; and temperature and PET seasonality, 

which express both seasonality and continentality. These four variables were used as the input to the 

actual clustering. 

Table 2. Subset of the Pearson correlation matrix for the forty-two bioclimate variables (Appendix 2), for those with a 

correlation 1.00 (bold). The four underlined indicators were selected for inclusion in the further analysis 

Indicator ind_6 ind_10 ind_11 ind_12 ind_13 ind_14 ind_15 ind_16 ind_18 ind_19
ind_6 Minimum T of the coldest month 1.00
ind_10 Mean T of the warmest quarter 0.82 1.00
ind_11 Mean T of the coldest quarter 1.00 0.85 1.00
ind_12 T sums when mean monthly T > 0°C 0.93 0.91 0.95 1.00
ind_13 T sums when mean monthly T > 5°C 0.92 0.89 0.93 1.00 1.00
ind_14 Mean T of the coldest month 1.00 0.84 1.00 0.94 0.93 1.00
ind_15 Mean T of the warmest month 0.79 1.00 0.82 0.89 0.87 0.81 1.00
ind_16 Maximum T of the coldest month 0.99 0.85 1.00 0.95 0.93 1.00 0.82 1.00
ind_18 Number of months with mean T > 10°C 0.92 0.89 0.93 1.00 1.00 0.93 0.87 0.93 1.00
ind_19 Thermicity index 0.99 0.87 1.00 0.95 0.93 1.00 0.84 1.00 0.94 1.00 
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Table 3. Eigenvalues (A) and eigenvectors (B) for the first three components of the PCA for the subset of thirty-six 

bioclimate variables with a correlation < 1.00, explaining 99.9% of the total variation. Variable with eigenvector loadings > 

0.1, which were selected as input to the clustering, are underlined. 

A)
PC1 PC2 PC3

eigenvalues 1.0E+00 2.5E-01 1.9E-03
% explained 80.4% 19.4% 0.2%
cumulative 80.4% 99.8% 99.9%

B)
Indicator
ind_1 Annual mean T 0.00 0.00 0.01
ind_2 Mean diurnal range 0.00 0.00 0.00
ind_3 Isothermality 0.00 0.00 0.00
ind_4 T seasonality -0.11 0.09 -0.94
ind_5 Maximum T of the warmest month 0.00 0.00 -0.01
ind_6 Minimum T of the coldest month 0.01 0.00 0.02
ind_7 Annual T range 0.00 0.00 -0.03
ind_8 Mean T of the wettest quarter 0.00 0.00 0.00
ind_9 Mean T of the driest quarter 0.01 0.00 0.01
ind_12 T sums when mean monthly T > 0°C 0.98 -0.18 -0.13
ind_15 Mean T of the warmest month 0.00 0.00 -0.01
ind_16 Maximum T of the coldest month 0.01 0.00 0.02
ind_17 Minimum T of the warmest month 0.00 0.00 -0.01
ind_20 Annual precipitation 0.01 -0.02 0.07
ind_21 Precipitation of the wettest month 0.00 0.00 0.01
ind_22 Precipitation of the driest month 0.00 0.00 0.00
ind_23 Precipitation seasonality 0.00 0.00 0.00
ind_24 Precipitation of the wettest quarter 0.00 -0.01 0.03
ind_25 Precipitation of the driest quarter 0.00 0.00 0.01
ind_26 Precipitation of the warmest quarter 0.00 0.00 0.01
ind_27 Precipitation of the coldest quarter 0.00 0.00 0.02
ind_28 Minimum June July August precipitation 0.00 0.00 0.00
ind_29 Maximum June July August precipitation 0.00 0.00 0.00
ind_30 Minimum December January February precipitation 0.00 0.00 0.01
ind_31 Maximum December January February precipitation 0.00 0.00 0.01
ind_32 Total precipitation for months with mean T > 0°C 0.01 -0.01 0.08
ind_33 Annual actual evapotranspiration 0.01 0.00 0.05
ind_34 Annual potential evapostranspiration 0.02 0.00 0.00
ind_35 Coefficient of annual moisture availability 0.00 0.00 0.00
ind_36 Aridity Index -0.19 -0.98 -0.08
ind_37 PET seasonality -0.01 0.05 -0.27
ind_38 Thornthwaite humidity index 0.00 -0.01 0.00
ind_39 Thornthwaite aridity index 0.00 0.00 0.00
ind_40 Emberger’s pluviothermic quotient 0.00 0.00 0.00
ind_41 Annual solar radiation 0.00 0.00 0.00
ind_42 Altitude -0.01 -0.01 0.09 

 

Table 4. Eigenvalues (A) and Eigenvectors (B) for four principal components of the final clustering variables 

A)
PC1 PC2 PC3 PC4

eigenvalues 3.6E+08 8.7E+07 2.6E+06 4.8E+05
% explained 80.1% 19.2% 0.6% 0.1%
cumulative 80.1% 99.3% 99.9% 100.0%

B)
Indicator
ind_4 T seasonality -0.11 -0.09 0.95 -0.28
ind_12 T sums when mean monthly T > 0°C 0.98 0.18 0.13 -0.02
ind_36 Aridity Index -0.19 0.98 0.07 0.02
ind_37 PET seasonality -0.01 -0.05 0.27 0.96
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The PCA of the four clustering variables shows that each component mainly relates to one variable, 

although the other variables also display some influence (Table 4). The first two components explain 

the majority of the variation. PC1, which explains 80.1% of the variation, is mainly determined by the 

annual temperature sum, while PC2 (19.2 % of the variation) expresses the Aridity Index. PC3 and 

PC4 are determined by temperature and PET seasonality respectively. 

The ISODATA clustering distinguished 125 Global Environmental Strata, which were aggregated to 

eighteen GEnZs (labelled A to R) based on the dendrogram (Fig. 2). The GEnZs and the strata were 

assigned consistent codes, as described above. In practice this means that cooler strata in a GEnZ will 

have a lower number. In addition, the zones were given a descriptive label based primarily on mean 

statistics for the annual temperature sums and the Aridity Index based on the classification in Table 5.  

A map legend was constructed using the mean values of the first three Principal Components to define 

the red-green-blue colour scheme. PC1 was used to define the amount of red, PC2 the blue coloration 

and PC3 the green coloration. The resulting legend produces a map that clearly distinguishes well 

known climate zones, as well as more detailed divisions within these zones (Fig. 3). The GEnS 

recognises known environmental similarities, e.g. K5 identifies similar Mediterranean climates in 

Europe, Australia, Chile, South Africa and California; R9 links tropical parts of Northern Australia to 

Papua New Guinea, Indochina and beyond; and J4 connects the cool temperate and moist climates of 

Brittany (France) and Cornwall (UK) with the foothills of the Himalayas, including Darjeeling. This 

last association of frost free climates with mild temperatures and regular rainfall inspired recent tea 

production in Cornwall (Morris, 2005). An initial inspection also indicated that the GEnS strata 

corresponded well to global crop distribution patterns. 

Table 6 shows that the Kappa values for the comparison of the GEnS with existing climate 

classifications range between 0.54 and 0.72 indicating ‘good’ and ‘very good’ comparisons, according 

to (Monserud & Leemans, 1992). These Kappa values are similar to those reported in earlier 

comparisons of European classifications (Bunce et al., 2002; Metzger et al., 2005) and although the 

details of the classifications differed there were broad similarities reflecting important divisions along 

major environmental gradients. 

Finally, the comparisons between the area of countries and the number of strata occurring within 

countries for the GEnS, the Köppen map and the WWF biomes reveals a very similar pattern among 

the datasets (Fig. 4) and correlations with the GEnS are strong (0.86 for the Köppen climate classes; 

0.84 for the biomes). Countries above the line, e.g. Chile, tend to have large topographic 

heterogeneity, whereas those below the line, e.g. Brazil generally do not. These results indicate that 

the GEnS provides a balanced subdivision of recognised climate zones 
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Figure 2. Dendrogram of the clustering illustrating the relation between the eighteen aggregated Global Environmental Zones 

and the number of strata per zone. 

Table 5. The Global Environmental Zones (GEnZs) were given a descriptive names based on the mean values of the annual 

temperature sums (A) and the Aridity Index (B) for the strata. An exception was made for Arctic temperatures in which case 

only the label ‘Arctic’ was used. 

A)
Annual temperature sums > 0°C Label
[ 0, 1000 ) extremely cold
[ 1000, 2500 ) cold
[ 2500, 4500 ) cold temperate
[ 4500, 6500 ) warm temperate
[ 6500, 8000 ) hot
[ 8000, ? ) extremely hot

B)
Aridity Index Label
[ 0, 0.1 ) arid
[ 0.1,  0.3 ) xeric
[ 0.3, 0.6 ) dry
[ 0.6, 1.0 ) mesic
[ 1.0, 1.5 ) moist
[ 1.5, ? ) wet  



 

Figure 3. Map of the global environmental stratification, depicting 125 strata at a 30 arcsec (approximately 1km2) spatial resolution in the Winkel Tripple projection. The legend provides a 

visual combination of the three main climate gradients incorporated in the clustering. 
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Table 6 Strength of agreement, expressed by the Kappa statistic, between the GEnS and nine other climate ecosystem classifications. Monserud & Leemans (1992) give an indication of the 

strength of agreement for different ranges of Kappa, which are noted here. 

Climate classification Reference Extent # classes #GEnS strataKappa Strength of agreement
Köppen Peel et al. 2007 global 30 125 0.57 Good
WWF biomes Olson et al. 2001 global 14 125 0.65 Good
EnS Metzger et al., 2005 Europe 84 67 0.64 Good
Ecoregions North America1 1) North America 183 121 0.65 Good
USGS isoclimates Sayre et al., 2009 US 125 86 0.68 Good
USGS isoclimates Sayre et al., 2008 South America 10 78 0.62 Good
USGS isoclimates Sayre et al. in prep Africa 156 87 0.72 Very good
ITE land classes Bunce et al. 1996ab Great Britain 41 13 0.54 Good
CLARATES Regato et al. 1999 Spain 218 40 0.62 Good

1) http://www.epa.gov/wed/pages/ecoregions/na_eco.htm  
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Figure 4. Relationship between the area of 202 countries and the number of strata in (a) the GEnS, (b) the Köppen climate 

classification (Peel et al., 2007), and (c) the biome classes used to underpin the World Wildlife Fund ecoregions (Olson et al., 

2001). Linear regressions are shown to distinguish between relatively diverse countries (above the line) and more 

homogeneous countries (under the line). To facilitate comparison between the graphs labels have been added for sixteen 

countries.  
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DISCUSSION 

Subjective choices in the quantitative method 

The GEnS represents the first global high resolution quantitative stratification distinguishing more 

than the basic biome divisions in the twenty to thirty classes identified previously. Major advantages 

of quantitative approaches, argued for by Lugo et al. (1999) and summarised by Leathwick et al. 

(2003), include: the much greater objectivity, consistency, and spatial accuracy of the classification 

process; their ability to define hierarchical classifications that can be used at varying degrees of detail; 

and their open nature, which allows the ready incorporation of new or improved data. Nevertheless, 

despite the objective nature of the classification techniques used to construct the GEnS, judgemental 

decisions were required in each stage of the process (Fig. 1).  

Firstly, choices were made in the variable selection. The wide range of bioclimate indicators required 

rigorous statistical screening, but the thresholds used in the final selection are inevitably arbitrary (i.e. 

eigenvector loadings > 0.1 in the first three principal components). The results nevertheless show that 

there is a distinct division between the dominant variables above the threshold (eigenvector loadings 

0.98, .0.98, 0.94 and 0.27; Table 3), and the remaining variables (eigenvector loadings 0.09 and 

lower). Furthermore, the final four variables do represent bioclimate characteristics that are included 

in most existing classifications (cf Table 1), although seasonality is generally reflected through 

monthly extremes (e.g. the minimum temperature in the coldest month) instead of measures of annual 

variation (Table 1). Nevertheless, the correlation analysis shows that the monthly temperature 

extremes have high correlations with annual temperature seasonality (Pearson correlation coefficient 

between 0.69 and 0.89; Appendix 2). Thus the screening provides statistical rules for the selection of 

the condensed subset of variables. 

The major decision was to classify 125 strata, an arbitrary number, but providing significantly more 

detail than earlier global numerical classifications. Although more strata could be distinguished, it was 

necessary to obtain a balance between increased detail and complexity. A greater number of divisions 

would complicate the interpretation and description of the strata. Furthermore, initial tests indicated 

that additional class divisions mainly lead to an increase in altitudinal and latitudinal bands, which in 

our opinion did not justify the added complexity. Bunce et al. (1996b) discuss statistical stopping rules 

and concluded that accepting an arbitrary number was appropriate. The chosen number of classes is 

comparable to the Environmental Stratification of Europe (Metzger et al., 2005) and the isoclimates of 

the United States (Sayre et al., 2009) (Table 6). 

The decisions in the post-processing have no influence on delineation, but are designed to improve 

utility. One important choice, however, was the decision not to remove small patches or scattered 
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individual pixels, as carried out by Metzger et al. (2005) and Bunce et al. (1996a) to eliminate 

potential errors in the input data or outliers in the clustering. Leathwick et al. (2003) argue strongly 

against such a ‘geographic’ approach, where spatially discrete units are created at the expense of 

environmental heterogeneity. In the GEnS small patches are in many cases interpretable ecologically, 

e.g. the East African mountain tops, which are linked to the Mediterranean in the GEnS, and as 

observed in the flora distribution of Erica arborea (Rikli 1933). 

Utility of the Global Environmental Stratification 

At a global scale, climate is the main determinant of environmental patterns (Walter & Lieth, 1964; 

Odum, 1983; Klijn & De Haes, 1994; Godron, 1994), justifying the naming of the dataset. However, 

geomorphology, hydrology, geology, and soils follow climate in the conceptual hierarchy (Klijn & De 

Haes, 1994; Sayre et al., 2009), but are not included mainly because of the difficulties in obtaining 

reliable data. Incorporating greater thematic detail would increase both the number of data layers, each 

with inherent uncertainties, and the choices that would need to be made for weighting or classifying 

the different dimensions (Hazeu et al., 2010). Furthermore, it is difficult to get consistent global data 

and there are challenges in incorporating such different data sources in the clustering (Bunce et al., 

1996a; Metzger et al., 2005).  

There are also limitations to the climate data used to construct the GEnS, which will affect its quality. 

The high resolution of the climate surface does not imply that the quality of the data is always the 

same. Hijmans et al. (2005) discuss how the quality of the surfaces is spatially variable and depends 

on the local climate variability in an area, the quality and density of the observations, and the degree to 

which a spline can be fitted through it. Locally important climate drivers, e.g. those caused by aspect 

in mountain areas or the formation of sea fog along coastal ranges are also poorly represented. Finally, 

there remain errors in the Shuttle Radar Topography Mission (STRM) elevation data (Jarvis et al., 

2008) used in the spatial interpolation of the climate data. Despite these limitations, WorldClim 

provides sufficient spatial detail to distinguish and partition steep environmental gradients. 

If required, climate stratifications can be integrated with other spatial datasets to provide additional 

thematic detail. The European Environmental Stratification (Metzger et al., 2005) has been intersected 

with soils data to produce an agro-ecological typology (Hazeu et al., 2010), and with an economic 

density indicator to produce a socio-ecological stratification (Metzger et al., 2010). Similarly, Sayre et 

al. (2009; 2008) have intersected a climate classification with further data layers to define ecosystem 

classifications for the US, South America and Africa. Other useful intersects with the GEnS could 

include data such as global biogeographic realms (Udvardy, 1975), for the analysis of species data, or 

geomorphologic terrain forms, e.g. to separate alpine ranges from the arctic regions. 
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Even climatically, some heterogeneity remains when the global variation in bioclimate is partitioned in 

125 strata. For example, regionally important gradients in precipitation, which can mark significant 

regional differences in dry ecosystems, are not always reflected sufficiently. In Israel the Northern 

Negev Desert and the city of Tel Aviv both fall in the hot and dry stratum N6, while the latter is 

considered Mediterranean with greater precipitation, concentrated in the winter. Additional strata 

would have provided more regional detail, but also incur the risk of losing global connections, a prime 

reason for developing the GEnS. Despite this limitation, the results showed good comparisons with 

existing classifications (Table 6) and confirm recognised climate patterns. While limitations remain, 

the GEnS has significant advantages over existing global climate classifications, making it suitable for 

a wide range of applications. 

The primary reason for developing the GEnS was to provide a unifying framework for GEO BON 

activities (GEOBON, 2010). It should facilitate the integration and analysis of disparate sources of 

global biodiversity data, and help to compare trends in similar environments, as has been asked for by 

the 2010 Conference of Parties of the CBD in Nagoya. Furthermore, it can be used to target future 

monitoring and research to achieve a more balanced set of biodiversity observations. Other 

applications, discussed by Jongman et al. (2006) and Hazeu et al. (2010), include stratifying earth 

observations (cf Duro et al., 2007) and scenario modelling (Metzger et al., 2008a). The utility is not 

limited to biodiversity, as other global environmental and agricultural research could also benefit from 

the dataset, especially where there is a need for a consistent stratification across political boundaries.  

CONCLUSION 

The GEnS provides a high resolution stratification of the global environment, constructed using 

rigorous quantitative methods. Compared with existing classifications, the rigorous statistical methods 

used to delineate strata and the high spatial resolution allows for improved identification of regional 

gradients. Comparisons with existing global, continental and national stratifications confirmed that the 

modelled strata successfully identify recognisable environmental gradients. The dataset therefore 

provides a valuable unifying framework for global biodiversity research, and should prove useful as a 

spatial analytical framework for aggregation and comparison of field observations, biodiversity 

conservation gap analyses, and systematic planning of environmental research and monitoring 

programs. 
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Appendix 1 
Description of the eighteen newly calculated bioclimate variables. Although some indicators could be 

easily extracted from the available data sets, others required more elaborate calculations. 

 

ind_12, Temperature sums when mean monthly temperature is above 0°C 

Calculated by summation of mean monthly temperature for all months with a mean temperature 

greater than 0°C, and multiplying by the total number of days in those months. 

 

ind_13, Temperature sums when mean monthly temperature is above 5°C 

Calculated by summation of mean monthly temperature for all months with a mean temperature 

greater than 5°C, and multiplying by the total number of days in those months. 

 

ind_14, Mean temperature of the coldest month 

ind_15, Mean temperature of the warmest month 

ind_16, Maximum temperature of coldest month 

ind_17, Minimum temperature of warmest month 

Extracted relevant value from WorldClim monthly temperature data. 

 

ind_18, Number of months with a mean temperature > 10°C 

Count of the number of months for which mean temperature > 10°C 

 

ind_19, Thermicity index 

Indicator used by Sayre et al. (2008; 2009) to define isoclimate regions, which is a summation of the 

Annual mean temperature range (ind_1), the minimum temperature of the coldest month (ind_6) and 

the maximum temperature of coldest month (ind_16). 

 

ind_28, Minimum June July August precipitation 

ind_29, Maximum June July August precipitation 

ind_30, Minimum December January February precipitation 

ind_31, Maximum December January February precipitation 

Relevant values were extracted from the WorldClim monthly precipitation data. 

 

ind_32, Total precipitation for months with a mean monthly temperature is above 0°C 

Summation of mean monthly precipitation for months with a mean temperature > 10°C 
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ind_35, Coefficient of annual moisture availability 

Used by Pretice et al. (1992) and Sitch et al. (2003) to reflect the annual amount of growth-limiting 

drought stress on plants, who refer to it as the Priestley-Taylor coefficient alpha. It is calculated as the 

ratio between the annual actual evapotranspiration (ind_33) and the annual potential 

evapotranspiration (ind_34). 

 

ind_37, PET seasonality 

Calculated as 100 * the standards deviation of the monthly values for the potential evapotranspiration. 

 

ind_38, Thornthwaite humidity index 

An index of the degree of water surplus over water need as defined by Thornthwaite (1948): 

humidity index = 100s / n 

where s (the water surplus) is the sum of the monthly differences between precipitation and potential 

evapotranspiration for those months when the normal precipitation exceeds the latter, and n (the water 

need) is the sum of monthly potential evapotranspiration for those months of surplus. The humidity 

index has two uses in  

 

ind_39, Thornthwaite aridity index 

An index of the degree of water deficit below water need as defined by Thornthwaite (1948): 

aridity index = 100d / n 

where d (the water deficit) is the sum of the monthly differences between precipitation and potential 

evapotranspiration for those months when the normal precipitation is less than the normal potential 

evapotranspiration; and where n is the sum of monthly values of potential evapotranspiration for the 

deficient months. 

 

ind_40, Emberger Q 

Emberger’s pluviothermic quotient (Q) was calculated using the formula provided by Daget (1977): 

Q = 2000 P / (M + m + 546.4) (M - m)  

where P is the mean annual precipitation in mm (ind_20), M the mean maximum temperature of the 

warmest month (ind_17), and m is the mean minimum temperature of the coldest month (ind_6). 



Appendix 2 

Pearson correlation matrix for the forty-two bioclimate variables listed in Table 1, showing high correlations between many variables. Those variables with a 

correlation of 1.00 are presented in Table 2. 

Indicator var_1 var_2 var_3 var_4 var_5 var_6 var_7 var_8 var_9 var_10var_11 var_12 var_13 var_14 var_15 var_16 var_17 var_18 var_19 var_20 var_21 var_22 var_23 var_24 var_25 var_26 var_27var_28 var_29 var_30 var_31 var_32 var_33 var_34 var_35 var_36 var_37 var_38 var_39 var_40 var_41 var_42
var_1 Annual mean T 1.00 0.53 0.84 -0.83 0.90 0.97 -0.73 0.81 0.94 0.93 0.98 0.96 0.94 0.98 0.91 0.98 0.92 0.95 0.99 0.37 0.45 0.05 0.37 0.44 0.080.22 0.25 0.16 0.21 0.33 0.37 0.51 0.49 0.96 -0.47 -0.35 -0.06-0.32 0.30 0.40 0.95 -0.19
var_2 Mean diurnal range 0.53 1.00 0.39 -0.22 0.71 0.36 0.01 0.53 0.44 0.62 0.43 0.48 0.46 0.42 0.63 0.47 0.51 0.47 0.45 -0.24 -0.10 -0.38 0.51 -0.12 -0.37 -0.20 -0.24 -0.22 -0.17 -0.11 -0.12 -0.10 -0.09 0.67 -0.77 -0.52 0.46 -0.44 0.66 -0.21 0.58 0.17
var_3 Isothermality 0.84 0.39 1.00 -0.89 0.61 0.89 -0.83 0.64 0.81 0.66 0.89 0.85 0.84 0.89 0.62 0.89 0.62 0.84 0.88 0.56 0.58 0.22 0.28 0.58 0.250.35 0.43 0.22 0.25 0.52 0.56 0.67 0.66 0.83 -0.22 -0.19 -0.43-0.19 0.07 0.64 0.89 0.02
var_4 T seasonality -0.83 -0.22 -0.89 1.00 -0.51 -0.94 0.97 -0.50 -0.86 -0.58 -0.93 -0.80 -0.78 -0.93 -0.54 -0.92 -0.57 -0.79 -0.91 -0.55 -0.57 -0.24 -0.19 -0.57 -0.27 -0.33 -0.40 -0.23 -0.26 -0.50 -0.54-0.61 -0.59 -0.76 0.15 0.02 0.46 0.02 0.01 -0.56 -0.83 -0.05
var_5 Maximum T of the warmest month 0.90 0.71 0.61 -0.51 1.000.77 -0.36 0.84 0.79 0.99 0.80 0.86 0.84 0.78 0.99 0.80 0.96 0.85 0.82 0.11 0.23 -0.14 0.43 0.21 -0.13 0.02 0.05 0.03 0.09 0.10 0.13 0.28 0.27 0.91 -0.66 -0.54 0.30 -0.49 0.52 0.15 0.82 -0.29
var_6 Minimum T of the coldest month 0.97 0.36 0.89 -0.94 0.771.00 -0.88 0.70 0.95 0.82 1.00 0.93 0.92 1.00 0.79 0.99 0.82 0.92 0.99 0.48 0.52 0.16 0.27 0.52 0.19 0.28 0.35 0.21 0.25 0.42 0.47 0.59 0.56 0.90 -0.33 -0.22 -0.24 -0.20 0.16 0.51 0.92 -0.14
var_7 Annual T range -0.73 0.01 -0.83 0.97 -0.36 -0.88 1.00 -0.39 -0.78 -0.46 -0.85 -0.71 -0.70 -0.86 -0.41 -0.84 -0.46 -0.70 -0.83 -0.61 -0.59-0.34 -0.07 -0.59 -0.37 -0.38 -0.47 -0.28 -0.30 -0.54 -0.58 -0.64 -0.61 -0.63 -0.01 -0.09 0.57 -0.07 0.15 -0.63 -0.72 -0.01
var_8 Mean T of wettest quarter 0.81 0.53 0.64 -0.50 0.84 0.70 -0.39 1.00 0.61 0.86 0.73 0.80 0.79 0.72 0.86 0.73 0.86 0.79 0.75 0.25 0.37 -0.07 0.45 0.35 -0.05 0.25 0.07 0.16 0.21 0.17 0.21 0.41 0.43 0.80 -0.42 -0.54 0.06 -0.52 0.29 0.28 0.76 -0.34
var_9 Mean T of driest quarter 0.94 0.44 0.81 -0.86 0.79 0.95 -0.78 0.61 1.00 0.83 0.95 0.90 0.88 0.95 0.81 0.94 0.81 0.88 0.95 0.37 0.41 0.10 0.26 0.40 0.130.15 0.30 0.11 0.16 0.36 0.39 0.47 0.43 0.89 -0.44 -0.20 -0.09-0.17 0.28 0.40 0.88 -0.10
var_10 Mean T of warmest quarter 0.93 0.62 0.66 -0.58 0.99 0.82 -0.46 0.86 0.83 1.00 0.85 0.91 0.89 0.84 1.00 0.85 0.99 0.89 0.87 0.19 0.30 -0.08 0.41 0.28 -0.06 0.09 0.11 0.08 0.14 0.15 0.20 0.35 0.34 0.92 -0.60 -0.50 0.21 -0.45 0.45 0.23 0.85 -0.32
var_11 Mean T of coldest quarter 0.98 0.43 0.89 -0.93 0.80 1.00 -0.85 0.73 0.95 0.85 1.00 0.95 0.93 1.00 0.82 1.00 0.83 0.93 1.00 0.45 0.51 0.12 0.32 0.50 0.150.26 0.31 0.19 0.24 0.40 0.44 0.56 0.54 0.93 -0.38 -0.25 -0.21-0.23 0.21 0.48 0.94 -0.12
var_12 T sums when mean monthly T > 0°C 0.96 0.48 0.85 -0.80 0.86 0.93 -0.71 0.80 0.90 0.91 0.95 1.00 1.00 0.94 0.89 0.95 0.90 1.00 0.95 0.38 0.47 0.02 0.43 0.46 0.05 0.20 0.24 0.15 0.22 0.330.37 0.51 0.48 0.97 -0.45 -0.28 -0.18 -0.25 0.30 0.43 0.91 -0.23
var_13 T sums when mean monthly T > 5°C 0.94 0.46 0.84 -0.78 0.84 0.92 -0.70 0.79 0.88 0.89 0.93 1.00 1.00 0.93 0.87 0.93 0.89 1.00 0.93 0.38 0.47 0.02 0.44 0.46 0.05 0.19 0.24 0.15 0.22 0.320.37 0.50 0.47 0.96 -0.43 -0.25 -0.22 -0.22 0.29 0.43 0.89 -0.24
var_14 Mean T of the coldest month 0.98 0.42 0.89 -0.93 0.78 1.00 -0.86 0.72 0.95 0.84 1.00 0.94 0.93 1.00 0.81 1.00 0.82 0.93 1.00 0.46 0.51 0.12 0.31 0.51 0.150.26 0.32 0.19 0.24 0.41 0.45 0.57 0.54 0.92 -0.37 -0.24 -0.23-0.22 0.20 0.48 0.94 -0.12
var_15 Mean T of the warmest month 0.91 0.63 0.62 -0.54 0.99 0.79 -0.41 0.86 0.81 1.00 0.82 0.89 0.87 0.81 1.00 0.82 0.99 0.87 0.84 0.17 0.28 -0.10 0.41 0.26 -0.08 0.07 0.09 0.07 0.13 0.13 0.17 0.33 0.32 0.90 -0.60 -0.51 0.24 -0.47 0.46 0.20 0.82 -0.34
var_16 Maximum T of coldest month 0.98 0.47 0.89 -0.92 0.80 0.99 -0.84 0.73 0.94 0.85 1.00 0.95 0.93 1.00 0.82 1.00 0.82 0.93 1.00 0.43 0.50 0.09 0.35 0.49 0.120.25 0.28 0.17 0.22 0.39 0.43 0.54 0.52 0.94 -0.40 -0.26 -0.21-0.23 0.23 0.45 0.95 -0.09
var_17 Minimum T of warmest month 0.92 0.51 0.62 -0.57 0.96 0.82 -0.46 0.86 0.81 0.99 0.83 0.90 0.89 0.82 0.99 0.82 1.00 0.89 0.85 0.23 0.33 -0.04 0.39 0.32 -0.02 0.14 0.13 0.12 0.18 0.16 0.21 0.39 0.37 0.88 -0.53 -0.46 0.16 -0.43 0.39 0.27 0.82 -0.39
var_18 Number of months with mean T > 10°C 0.95 0.47 0.84 -0.790.85 0.92 -0.70 0.79 0.88 0.89 0.93 1.00 1.00 0.93 0.87 0.93 0.89 1.00 0.94 0.37 0.47 0.02 0.43 0.46 0.05 0.20 0.24 0.15 0.21 0.33 0.37 0.50 0.47 0.96 -0.44 -0.26 -0.21 -0.23 0.30 0.43 0.90-0.24
var_19 Thermicity index 0.99 0.45 0.88 -0.91 0.82 0.99 -0.83 0.75 0.95 0.87 1.00 0.95 0.93 1.00 0.84 1.00 0.85 0.94 1.00 0.44 0.50 0.10 0.33 0.49 0.130.25 0.30 0.18 0.23 0.39 0.43 0.55 0.53 0.94 -0.40 -0.27 -0.18-0.25 0.23 0.46 0.94 -0.14
var_20 Annual precipitation 0.37 -0.24 0.56 -0.55 0.11 0.48 -0.61 0.25 0.37 0.19 0.45 0.380.38 0.46 0.17 0.43 0.23 0.37 0.44 1.00 0.90 0.70 -0.17 0.92 0.74 0.80 0.75 0.71 0.68 0.72 0.75 0.97 0.89 0.25 0.53 0.27 -0.540.18 -0.64 0.93 0.41 -0.08
var_21 Precipitation of the wettest month 0.45 -0.10 0.58 -0.57 0.23 0.52 -0.59 0.37 0.41 0.30 0.51 0.47 0.47 0.51 0.28 0.50 0.33 0.47 0.50 0.90 1.00 0.39 0.14 0.99 0.43 0.74 0.58 0.72 0.780.57 0.63 0.90 0.83 0.36 0.37 0.14 -0.53 0.08 -0.47 0.79 0.49 -0.06
var_22 Precipitation of the driest month 0.05 -0.38 0.22 -0.24-0.14 0.16 -0.34 -0.07 0.10 -0.08 0.12 0.02 0.02 0.12 -0.10 0.09 -0.04 0.02 0.10 0.70 0.39 1.00 -0.52 0.42 0.99 0.55 0.67 0.47 0.37 0.57 0.54 0.61 0.52 -0.07 0.55 0.40 -0.29 0.32 -0.63 0.72 0.05 -0.07
var_23 Precipitation seasonality 0.37 0.51 0.28 -0.19 0.43 0.27 -0.07 0.45 0.26 0.41 0.32 0.43 0.44 0.31 0.41 0.35 0.39 0.43 0.33 -0.17 0.14 -0.52 1.00 0.10 -0.52 -0.10 -0.27 -0.09 0.06 -0.17 -0.14 -0.06 -0.09 0.48 -0.52-0.32 -0.04 -0.26 0.49 -0.14 0.43 0.15
var_24 Precipitation of wettest quarter 0.44 -0.12 0.58 -0.57 0.21 0.52 -0.59 0.35 0.40 0.28 0.50 0.460.46 0.51 0.26 0.49 0.32 0.46 0.49 0.92 0.99 0.42 0.10 1.00 0.46 0.76 0.61 0.73 0.76 0.61 0.66 0.92 0.86 0.34 0.41 0.16 -0.53 0.09 -0.50 0.81 0.48 -0.06
var_25 Precipitation of driest quarter 0.08 -0.37 0.25 -0.27 -0.13 0.19 -0.37 -0.05 0.13 -0.06 0.15 0.05 0.05 0.15 -0.08 0.12 -0.02 0.05 0.13 0.74 0.43 0.99 -0.52 0.46 1.00 0.58 0.70 0.49 0.39 0.58 0.57 0.65 0.56 -0.05 0.56 0.40 -0.31 0.32 -0.64 0.75 0.08 -0.07
var_26 Precipitation of warmest quarter 0.22 -0.20 0.35 -0.33 0.02 0.28 -0.38 0.25 0.15 0.09 0.26 0.20 0.19 0.26 0.07 0.25 0.14 0.20 0.25 0.80 0.74 0.55 -0.10 0.76 0.58 1.00 0.37 0.63 0.58 0.57 0.59 0.77 0.75 0.11 0.53 0.20 -0.38 0.11 -0.64 0.68 0.28 -0.02
var_27 Precipitation of coldest quarter 0.25 -0.24 0.43 -0.40 0.05 0.35 -0.47 0.07 0.30 0.11 0.31 0.240.24 0.32 0.09 0.28 0.13 0.24 0.30 0.75 0.58 0.67 -0.27 0.61 0.70 0.37 1.00 0.54 0.50 0.49 0.53 0.71 0.61 0.14 0.39 0.25 -0.370.19 -0.46 0.77 0.25 -0.09
var_28 Minimum June July August precipitation 0.16 -0.22 0.22-0.23 0.03 0.21 -0.28 0.16 0.11 0.08 0.19 0.15 0.15 0.19 0.07 0.17 0.12 0.15 0.18 0.71 0.72 0.47 -0.09 0.73 0.49 0.63 0.54 1.00 0.93 0.10 0.13 0.68 0.58 0.05 0.45 0.20 -0.30 0.12 -0.51 0.610.18 -0.06
var_29 Maximum June July August precipitation 0.21 -0.17 0.25-0.26 0.09 0.25 -0.30 0.21 0.16 0.14 0.24 0.22 0.22 0.24 0.13 0.22 0.18 0.21 0.23 0.68 0.78 0.37 0.06 0.76 0.39 0.58 0.50 0.931.00 0.06 0.10 0.66 0.56 0.11 0.38 0.16 -0.31 0.10 -0.43 0.57 0.23 -0.06
var_30 Minimum December January February precipitation 0.33-0.11 0.52 -0.50 0.10 0.42 -0.54 0.17 0.36 0.15 0.40 0.33 0.320.41 0.13 0.39 0.16 0.33 0.39 0.72 0.57 0.57 -0.17 0.61 0.58 0.57 0.49 0.10 0.06 1.00 0.96 0.70 0.68 0.26 0.34 0.21 -0.42 0.15-0.43 0.70 0.36 -0.05
var_31 Maximum December January February precipitation 0.37-0.12 0.56 -0.54 0.13 0.47 -0.58 0.21 0.39 0.20 0.44 0.37 0.370.45 0.17 0.43 0.21 0.37 0.43 0.75 0.63 0.54 -0.14 0.66 0.57 0.59 0.53 0.13 0.10 0.96 1.00 0.73 0.71 0.29 0.34 0.18 -0.44 0.12-0.43 0.73 0.40 -0.07
var_32 Total precipitation for months with a mean monthly T is above 0°C 0.51 -0.10 0.67 -0.61 0.28 0.59 -0.64 0.41 0.47 0.35 0.56 0.51 0.50 0.57 0.33 0.54 0.39 0.50 0.55 0.97 0.90 0.61 -0.06 0.92 0.65 0.77 0.71 0.68 0.66 0.70 0.73 1.00 0.93 0.39 0.39 0.05 -0.48 -0.03 -0.50 0.92 0.54 -0.14
var_33 Annual actual evapotranspiration 0.49 -0.09 0.66 -0.590.27 0.56 -0.61 0.43 0.43 0.34 0.54 0.48 0.47 0.54 0.32 0.52 0.37 0.47 0.53 0.89 0.83 0.52 -0.09 0.86 0.56 0.75 0.61 0.58 0.560.68 0.71 0.93 1.00 0.37 0.45 0.00 -0.48 -0.10 -0.56 0.81 0.53-0.15
var_34 Annual potential evapostranspiration 0.96 0.67 0.83 -0.76 0.91 0.90 -0.63 0.80 0.89 0.92 0.93 0.97 0.96 0.92 0.90 0.94 0.88 0.96 0.94 0.25 0.36 -0.07 0.48 0.34 -0.05 0.11 0.14 0.050.11 0.26 0.29 0.39 0.37 1.00 -0.59 -0.36 -0.04 -0.31 0.43 0.30 0.94 -0.12
var_35 Coefficient of annual moisture availability -0.47 -0.77 -0.22 0.15 -0.66 -0.33 -0.01 -0.42 -0.44 -0.60 -0.38 -0.45-0.43 -0.37 -0.60 -0.40 -0.53 -0.44 -0.40 0.53 0.37 0.55 -0.52 0.41 0.56 0.53 0.39 0.45 0.38 0.34 0.34 0.39 0.45 -0.59 1.00 0.48 -0.50 0.36 -0.95 0.40 -0.45 -0.05
var_36 Aridity Index -0.35 -0.52 -0.19 0.02 -0.54 -0.22 -0.09 -0.54 -0.20 -0.50 -0.25 -0.28 -0.25 -0.24 -0.51 -0.26 -0.46 -0.26 -0.27 0.27 0.140.40 -0.32 0.16 0.40 0.20 0.25 0.20 0.16 0.21 0.18 0.05 0.00 -0.36 0.48 1.00 -0.38 0.99 -0.51 0.19 -0.31 0.26
var_37 PET seasonality -0.06 0.46 -0.43 0.46 0.30 -0.24 0.57 0.06 -0.09 0.21 -0.21 -0.18 -0.22 -0.23 0.24 -0.21 0.16 -0.21 -0.18 -0.54 -0.53 -0.29-0.04 -0.53 -0.31 -0.38 -0.37 -0.30 -0.31 -0.42 -0.44 -0.48 -0.48 -0.04 -0.50 -0.38 1.00 -0.32 0.49 -0.55 -0.13 -0.10
var_38 Thornthwaite 1948 humidity index -0.32 -0.44 -0.19 0.02-0.49 -0.20 -0.07 -0.52 -0.17 -0.45 -0.23 -0.25 -0.22 -0.22 -0.47 -0.23 -0.43 -0.23 -0.25 0.18 0.08 0.32 -0.26 0.09 0.32 0.11 0.19 0.12 0.10 0.15 0.12 -0.03 -0.10 -0.31 0.36 0.99 -0.32 1.00 -0.38 0.12 -0.29 0.28
var_39 Thornthwaite 1948 aridity index 0.30 0.66 0.07 0.01 0.520.16 0.15 0.29 0.28 0.45 0.21 0.30 0.29 0.20 0.46 0.23 0.39 0.30 0.23 -0.64 -0.47 -0.63 0.49 -0.50 -0.64 -0.64 -0.46 -0.51 -0.43 -0.43 -0.43 -0.50 -0.56 0.43 -0.95 -0.51 0.49 -0.38 1.00 -0.49 0.26 0.00
var_40 Emberger’s pluviothermic quotient 0.40 -0.21 0.64 -0.560.15 0.51 -0.63 0.28 0.40 0.23 0.48 0.43 0.43 0.48 0.20 0.45 0.27 0.43 0.46 0.93 0.79 0.72 -0.14 0.81 0.75 0.68 0.77 0.61 0.570.70 0.73 0.92 0.81 0.30 0.40 0.19 -0.55 0.12 -0.49 1.00 0.44 -0.09
var_41 Annual solar radiation 0.95 0.58 0.89 -0.83 0.82 0.92 -0.72 0.76 0.88 0.85 0.94 0.91 0.89 0.94 0.82 0.95 0.82 0.90 0.94 0.41 0.49 0.05 0.43 0.48 0.080.28 0.25 0.18 0.23 0.36 0.40 0.54 0.53 0.94 -0.45 -0.31 -0.13-0.29 0.26 0.44 1.00 0.06
var_42 Altitude -0.19 0.17 0.02 -0.05 -0.29 -0.14 -0.01 -0.34 -0.10 -0.32 -0.12 -0.23 -0.24 -0.12 -0.34 -0.09 -0.39 -0.24 -0.14 -0.08 -0.06 -0.07 0.15 -0.06 -0.07 -0.02 -0.09 -0.06 -0.06 -0.05 -0.07 -0.14 -0.15 -0.12 -0.05 0.26 -0.10 0.28 0.00 -0.09 0.06 1.00 


