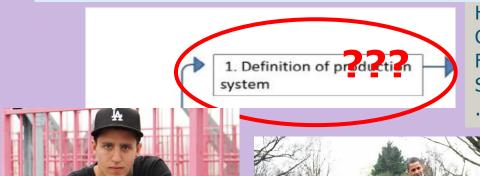

Breeding healthy dogs with genomics

Centre for Genetic Resources, the Netherlands

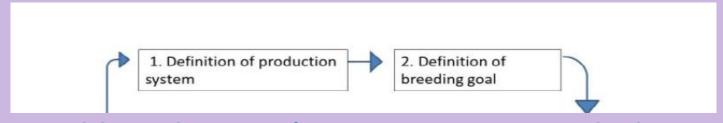

Breeding program

These are the steps to follow in setting up a breeding program (Course: ABG20306).

Centre for Genetic Resources, the Netherlands

Breeding program: production system

Home: Companion Friendship Status



Breeding program: breeding goal

- A good breeding goal is in agreement with the purpose of the breed. So:
 - 1. Excellent health
 - 2. Long life span
 - 3. Good temperament
 - 4. Good looks

In this order

Breeding program: breeding goal

- Breeding goal in practice
 - 1. Good looks (best in show!)
 - 2. Good temperament
 - 3. Good health

In this order

No attention for life span

Dog health: evaluation

- Pedigreed dogs have many inherited health problems
- Genomic information indicates that pedigreed dogs carry 22% more deleterious alleles than wolves (Marsden et al. 2016)
- Each dog carries several lethal mutations
- Lot of negative attention in the media

Species	# disorders - traits*
Dog	678
Cattle	494
Cat	331
Pig	242
Sheep	239
Horse	225
Chicken	212
Rabbit	89
Goat	78

^{*}Omnia.angis.org.aus 21/9/2016

Genetic Defects and disorders

- Monogenic defects
 - Single recessive deleterious alleles
 - Clear, Carrier, Affected animals
 - Only affected animals if population frequency of deleterious allele is high
- Polygenic diseases
 - Many alleles with small effect
 - Genetic liability varies on a continuous scale
 - Breeding value

Current practice: Monogenic defects

- Breeding starts when genetic defect becomes apparent
 - frequency of lethal allele is high
- If possible develop DNA test
- Exclude (likely) carriers from breeding
- Barking up the wrong tree
- Mopping up with the tap open

Centre for Genetic Resources, the Netherlands

Barking up the wrong tree: less deleterious alleles are the long term problem

- Simulated small breed, high inbreeding rate, 250 lethal defects = mean 3.4 defects per dog
 - Frequency went down or allele disappeared altogether because affected animals do not reproduce
 - Breed survived
- Simulated small breed, high inbreeding rate, 250 alleles reducing litter size 10%
 - Part of deleterious alleles got fixed
 - Sometimes breed went extinct

"Traffic light" inbreeding rate

Inbreeding rate	Risk	Effective population size
>1%	Risk of extinction, accumulation of genetic defects	<50
0.5% - 1%	Genetic defects will most probably occur	50-100
0.25% - 0.5%	Genetic defects can occur	100-200
< 0.25%	Small chance that genetic defects occur	>200

■ Average △F in 121 UK breeds between 1980-1984: 8%

Mopping up with the tap open

- Many DNA tests developed
- But strong selection against a defect may increase the inbreeding rate
- If population structure is not changed new defects will keep popping up

- Tap can be turned off
- Compute relatedness of animals with ALL other animals in te breed
 - Not just its (potential) mate
 - And publish these Mean Kinships

Polygenic disorders

- Breed standard related
 - Short noses (Brachycephalic Airways Obstruction Syndrome)
 - Etc.
- Other
 - Deafness
 - Hip dysplasia
 - etc.
- Current practice
 - Veterinary test to classify disease
 - E.g. free, mild, moderate, severe (or A,B,C,D,E or ...)
 - Rules by breeding organisations exclude animals for breeding
 - Phenotypic selection is not very effective
 - Environment obscures genetic influence

Estimated breeding values

- Syringomyelia in Cavallier King Charles Spaniels
 - Overlap in EBVs between categories
 - Large variation within categories

BV estimation not straight forward

- Needed
 - Systematic recording
 - Reliable pedigree
 - Large number of relatives

- Information from 'Look a likes', across countries and other breeds cannot be used
- Genomic selection combines DNA information with breeding value estimation
 - EBV can be estimated for dogs without (reliable) pedigree, relatives or phenotype
 - Still a lot to do before it can be operational in dogs, but great opportunities

Strategy for eliminating genetic defects 1

- 1. Monitor breeds for genetic defects
 - Systematic recording in registry
 - Frequency, severity, breed, sex, age, ancestry etc.
- 2. Determine mode of inheritence
 - Monogenic, Polygenic
 - Recessive, Dominant, ...
 - Heritability, genetic correlation with other traits
- 3. Rank selection candidates
 - Monogenic: clear, carrier, affected
 - Polygenic: Breeding value
 - Multiple defects: make index

Strategy for eliminating genetic defects 2

- 4. Evaluate relatedness and inbreeding
- 5. Select animals
 - Breeding organisations have to set rules
 - Threshold Mean kinship
 - Threshold for breeding value(s)
 - Use of carriers
- 6. Mate selected animals
 - Publish for all mating pairs probability of disease
 - Level of inbreeding
- 7. Evaluate frequency of diseases and inbreeding levels each year
- 8. Keep repeating 1-7

Breeding program

These are the steps to follow in setting up a breeding program (Course: ABG20306).

Conclusions

- Dog breeding can and should be improved
- It all starts with a proper breeding goal
- Do not limit breeding to DNA tests
- Monogenic genetic defects need management at the population level
- Polygenic traits need breeding value estimation: Genomic selection can help

Thank you

- Sabrine vd Kraats
- Harmen Doekes
- Maaike Kool
- Carmen Noordijk
- Eline Blomberg
- Sharita Kanhailal
- Manon Pippel
- Peter van Honk
- Dianne de Jong
- Raad van Beheer
- Breeding organisations

Kor Oldenbroek