Honey bee nutrition and energetic aspects

ROBERT BRODSCHNEIDER

KARL-FRANZENS-UNIVERSITÄT GRAZ UNIVERSITY OF GRAZ

Honey bee nutrition and energetic aspects

- 1. Carbohydrates
 - - fuel energy-intensive tasks
- 2. Protein
 - - the materials that make up bees and brood

(lipids) (vitamins)

Carbohydrates (sugars)

- · Adults in cages:
- Sucrose: LT₅₀ = 56,3 d
- Honey: $LT_{50} = 31,3 d$
- High-fructose corn syrup (HFCS) $LT_{50} = 37.7 d$

Barker & Lehner, 1978

Hydroxymethylfurfural (HMF)

- · Heat and acid catalized derivate of sugars
- For example in syrups

- Mortality after 20 d:
 - -12,5% (Control)
 - -15,0% (30 ppm HMF)
 - -58,7% (150 ppm HMF)

Jachomiwicz & El Sherbiny, 1975

Rembold & Lackner, 1981; Vandenberg & Shimanuki, 1987; Aupinel et al., 2005

Hydroxymethylfurfural: Adults versus Larvae Adults versus Larvae A22 L22 No consumption during pupal stage Adults: Adults: Adults:

Hydroxymethylfurfural: Adults versus Larvae

Hydroxymethylfurfural: Adults versus Larvae

- Toxicity of HMF:
- Concentration
- Exposition time
- Honey bee larvae are more susceptible than adults:

	Larvae	Adults
7d LC ₅₀	4280 ppm	> 80000 ppm

Carbohydrates (sugars)

- Source of energy for
 - Basic metabolism
 - · Flight metabolism
 - Thermoregulation
 - Wax production
 - 1 kg wax:
 - ~ 6,5 kg honey (Weiss, 1965)
- · Reserves for winter
- Brood

Carbohydrates (sugars)

Energetic costs of overwintering:

- Weight loss of (small) colonies
 - -0.42 kg / week
 - -0.84 kg / week (breeding colony!)
- Minimum 20 kg weight loss between July and April
 (Seeley & Visscher, 1985)

Thermoregulation

Stabentheiner et al., 2010

Thermoregulation • Ability developed above age of 2 days Test 15°C Test 20°C Test 25°C Test 20°C Test 25°C Test 20°C Test 25°C Test 25

Stabentheiner et al., 2010

Thermoregulation

- · Pupal temperature homeostasis affects
- " "cleverness" of adult bees (Tautz et al., 2003; Groh et al., 2004)

Thermoregulation

- · Pupal temperature homeostasis affects
 - " "cleverness" of adult bees (Tautz et al., 2003; Groh et al., 2004)
- Dongevity of adult bees
 Age at which several tasks are performed

 Bees reared at pupal temperature
 32,0°C
 34,5°C
 36,0°C

 Brodschneider et al., 2010 Eurbee

 Paraining

 Cleaning debric

 Giving bod

 Wagge dance

 Wagge dance

 Wagge dance

 Wagge dance

 So,0°C

 S

Thermoregulation before flight

... Energetic costs of foraging?

Energetic costs of flight

Heran & Crailsheim 1988

Energetic costs of flight

Worker consumption: mg sugar / h

Heran & Crailsheim 1988
Free flight (750 m)

14,1 mg sugar/h 7,8 m/sec

14,5 mg sugar/h 6 m/sec

Energetic costs of flight: Water Distance: maximum ~ 3000 m

Visscher, Crailsheim, Sherman, 1996

Flight mill results (a) First flights (10 µL 1M glucose solution) Control bees (n=11) Artificially reared bees (n=11) Flight progress (min) (b) Second flights (10 µL 2M glucose solution) Control bees (n=11) Artificially reared bees (n=11) Flight progress (min) Brodschneider et al., 2009

KARL-FRANZENS-UNIVERSITÄT GRAZ
UNIVERSITY OF GRAZ