

JRC TECHNICAL REPORTS

Collaborative Study Report: Determination of *Alternaria* toxins in cereals, tomato juice and sunflower seeds by liquid chromatography tandem mass spectrometry

Ádám Tölgyesi Joerg Stroka

2016

This publication is a Technical report by the Joint Research Centre, the European Commission's in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

JRC Science Hub

https://ec.europa.eu/jrc

JRC101959

EUR 28011 EN

ISBN 978-92-79-59856-2

ISSN 1831-9424

Doi: 10.2787/50804

 $\ensuremath{\mathbb{C}}$ European Union, 20x16 Reproduction is authorised provided the source is acknowledged.

All images © European Union 2016

How to cite: Tolgyesi A., Stroka J.; Collaborative Study Report: Determination of Alternaria toxins in cereals, tomato juice and sunflower seeds by liquid chromatography tandem mass spectrometry; EUR 28011 EN; doi:10.2787/50804

Table of contents

Ack	nowledgements
Abs	tract
1	. Introduction
2	. Scope
3	. Design of the study9
	3.1 The pre-trial9
	3.2 Time frame
	3.3 Materials and documents 10
	3.4 Organisation 10
4	. Test Materials 11
	4.1 Description 11
	4.2 Preparation12
	4.2.1 Test samples
	4.2.2 Common calibrants12
	4.2.3 Spiking solutions and levels13
	4.3 Homogeneity
	4.4 Stability
5	. Results and discussions
	5.1 General
	5.2 Evaluation of questionnaire – deviations from the method description
6	. Interpretation of the results and conclusions24
Ref	erences
List	of abbreviations and definitions 28
7	. Annexes
	7.1 Annex 1 – Homogeneity 29
	7.2 Annex 2 – Outline of the study
	7.3 Annex 3 – Subscription form
	7.4 Annex 4 – Instructions to the participants
	7.5 Annex 5 – Materials receipt form
	7.6 Annex 6 – Spiking protocol
	7.7 Annex 7 – Results form
	7.8 Annex 8 – Questionnaire
	7.9 Annex 9 – Standard operation procedure 41
	7.10 Annex 10 – Critical steps
	7.11 Annex 11 – Results of laboratories
	7.12 Annex 12 – Characteristics after recovery correction
	7.13 Annex 13 – Experimental details
	7.14 Annex 14 – F5 chromatogram

Acknowledgements

The laboratories participating in this exercise, listed in **Table 1**, are kindly acknowledged. The authors would like to thank the colleagues involved in the project for their support.

Table 1: The laboratories participated in the pre-trial and the trial. Organisation	Country
ROMER Labs Diagnostic GmbH	Austria
University of Natural Resources and Life Sciences Vienna	Austria
University of Vienna	Austria
Ghent University	Belgium
Agriculture and Agri-Food Canada	Canada
STATE GENERAL LABORATORY	Cyprus
Finnish Customs Laboratory	Finland
Laboratoire SCL de Rennes	France
Bundesanstalt für Materialforschung und -prüfung (BAM)	Germany
Chemisches und Veterinäruntersuchungsamt Sigmaringen	Germany
PhytoLab GmbH & Co. KG	Germany
Westfälische Wilhelms-Universität Münster	Germany
Public Analyst's Laboratory	Ireland
Barilla G.R. F.Ili SpA	Italy
GMO and Mycotoxin Unit	Italy
Veterinary Public Health and Food Safety Department	
Institute of Sciences of Food Production (ISPA)	Italy
Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche	Italy
National Research Council (CNR)	Italy
National Food and Veterinary Risk Assessment Institute	Lithuania
RIKILT	Netherlands
National Veterinary Research Institute	Poland
National Veterinary Institute (SVA)	Sweden
National Institute for Health, Environment and Food	Slovenia
UL Veterinary Faculty, National Veterinary Institute	Slovenia
National Center for Food	Spain
Sanitary Veterinary and Food Safety Laboratory	Romania
Fera Science Ltd	UK

Abstract

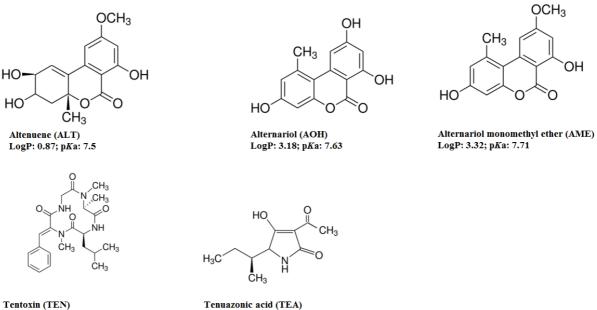
The Institute for Reference Materials and Measurements of the Joint Research Centre, a Directorate-General of the European Commission, organised a method validation study to evaluate the performance of a method for the simultaneous determination of five *Alternaria* toxins in cereals, tomato juice and sunflower seed samples.

The method validation study was conducted according to the International Union for Pure and Applied Chemistry harmonised protocol. The method was used for the determination of altenuene, alternariol, alternariol monomethyl ether, tentoxin and tenuazonic acid in both naturally contaminated and fortified samples. It was based on the extraction of the test materials with an acidified methanol – water mixture, followed by solid phase extraction clean-up. The determination was carried out by reversed phase high performance liquid chromatography coupled to a triple quadrupole mass spectrometric detector. The trial involved 16 participants representing a cross-section of research, private and official control laboratories from 11 EU Member States and Canada. The selection of collaborators was based on the performance in the pre-trial that was organised prior to the collaborative trial with participation of 25 laboratories.

Mean recoveries reported ranged from 53% to 107%. The sample reconstitution in a water-based injection solution is thought to be responsible for the low recovery obtained for alternariol monomethyl ether, which is the least polar compound from the toxins of interest. The relative standard deviation for repeatability (RSD_r) ranged from 2.0 to 34.8%. The relative standard deviation for reproducibility (RSD_R) ranged from 7.7 to 49.6%, reflecting HorRat values from 0.5 to 2.4 according to the Horwitz function modified by Thompson. A correction for recovery with the data generated by spiking experiments partially improve the reproducibility performance of the method.

The results highlight that the performance characteristics strongly depend on the matrix analysed, despite that fact that matrix matched calibration was used. These matrix effects can be compensated using stable isotope labelled internal standards; however, stable isotope analogues for the analysed compounds are not commercially available so far.

The outcome of this study however underpins its fitness-for-purpose, which is a requirement for its formal standardisation by the European Committee for Standardization (CEN).


1. Introduction

Alternaria species (e.g. *Alternaria alternata*) produce more than seventy secondary metabolites, but only a few of them have been structurally identified and reported as toxic. Among these *Alternaria* toxins altenuene (ALT), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN) and tenuazonic acid (TEA) are the main toxins of concern [**1-2**].

In the European Union (EU) maximum levels (ML) for a number of mycotoxins in food and feed are in force [**3**]; however not for *Alternaria* toxins. In 2011 the European Food Safety Authority (EFSA) has published a scientific opinion on the risks for animal and public health related to the presence of *Alternaria* toxins in feed and food [**2**]. In this opinion the need for "certified reference materials and defined performance criteria for the analysis of Alternaria toxins in various foods and feeds" was highlighted. The EFSA also concluded that "several chromatography based techniques are suitable for Alternaria toxin quantification in foods and feeds and liquid chromatography coupled to (tandem) mass spectrometry (LC-MS) has become the method of choice due to its sensitivity, selectivity and specificity". Furthermore, the opinion states that "representative occurrence data on *Alternaria* toxins in food and feed across the European countries are required to refine exposure assessment". Such assessments will be best performed with validated LC-MS methods.

Alternaria species can occur in vegetables, cereals, fruits and oilseeds and the continuous consumption of food infected by Alternaria mycotoxins can cause fetotoxic and teratogenic effects. Moreover, AOH and AME showed mutagenic and genotoxic properties [**2**]. ML for Alternaria toxins in food are currently under consideration by the European Commission (EC) based on the available data on their toxicity, hazard and occurrence. According to EFSA, agricultural commodities in Europe frequently contain ALT (73% of the analysed samples, maximum 1840 µg/kg in sunflower seeds), AME (6% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 1840 µg/kg in cereals) and TEA (15% of the analysed samples, maximum 4310 µg/kg in oats). Foods often contaminated with TEN are legumes, nuts and oilseeds. The average concentration detected for TEN is 50 µg/kg in these samples (maximum 880 µg/kg) [**2**].

Figure 1: Structure of Alternaria toxins

LogP: 1.21; pKa: 5.33

Tenuazonic acid (TEA) LogP: 0.92; pKa: 4.28

As mentioned before for the determination of *Alternaria* toxins at levels in the low $\mu q/kq$ range, only chromatographic methods are appropriate [4]. Alternaria toxins have weak acidic property (pKa 3.55 – 7.71), except TEN (**Figure 1**). The polarity of Alternaria toxins varies from polar to medium polar or non-polar). Most of them show adequate liquid chromatographic (LC) separation on reversed phase stationary phases, and their detection can be carried out using optical or mass spectrometric (MS) detectors [2,4]. TEA in its native form has an ability to form some tautomers and rotamers [5] that makes an adequate chromatographic separation of TEA difficult. A pre-column derivatisation for TEA with 2,4-dinitrophenylhydrazine (DNPH) as a derivatization agent has been introduced in the past to improve the HPLC separation and MS sensitivity of TEA [6]. In addition, the derivatisation also results in a shift of retention time as result of the less polar derivative. In the present validation TEA iwa determined in its native form without chemical derivatisation as members of the European Committee for Standardization Technical Committee 275, Working group 5 (CEN/TC 275/WG 5) opposed the need for such derivatisation upon own experience showing that a derivatisation is not necessary.

The Joint Research Centre's Institute for Reference Materials and Measurements (JRC-IRMM) hosts the European Union Reference Laboratory for Mycotoxins (EURL Mycotoxin). The main activities of the EURL are to organise proficiency test (PT) and to provide fully validated analytical methods for the network of National Reference Laboratories (NRLs). In 2010 and 2011 collaborative studies were conducted at JRC-IRMM to validate an analytical method for the determination of ochratoxin A in liquorice, paprika and chilli [**7-8**]. In 2015, an interlaboratory validation was carried out at JRC-IRMM for the determination of multi-toxins in feed [**9**].

Recently, a new liquid chromatography tandem mass spectrometric (LC-MS/MS) method was developed for *Alternaria* toxins by the EURL Mycotoxins [**10**]. The method was successfully in-house validated for various tomato samples and applied to tomato juice in an international PT organised by the Federal Institute for Risk Assessment (BfR, Berlin, Germany). The method was submitted to CEN under a standardization mandate issued by the European Commission. Upon request of CEN TC 275 / WG 5 the chemical

derivatisation was excluded from the original method proposal and a modified version was adopted. The validation study started with a preliminary validation (pre-trial) to introduce the method in those laboratories that were interested in participating in the trial.

Previous collaborative studies have shown that, with care and attention to detail during the organisation of a collaborative trial, it is possible to achieve impressive method performance characteristics even at low analyte levels close to the limits of detection (LOD). Due to the complexity of the matrices, particular care was taken during preparation of the test materials (blending of relevant matrix constituents and extensive homogenisation) and in demonstrating between-unit homogeneity before undertaking the study.

2. Scope

This method validation study (MVS) aimed at evaluating the recovery and precision characteristics of an analytical method for the determination of *Alternaria* toxins in cereals, tomato juice and sunflower seed samples. The validation ranges suggested by CEN were 1 to 10 μ g/kg for ALT, AOH and AME; and 10 to 1000 μ g/kg for TEN and TEA.

A test portion is extracted with a mixture of methanol and water and acetic acid. The extract is centrifuged and an aliquot of the upper layer is diluted with 1% (v/v) acetic acid in water. Then, the sample is cleaned-up on a polymeric based solid phase extraction cartridge. The toxins in the purified extract are quantified by LC-MS/MS.

The study was designed and evaluated according to the International Union for Pure and Applied Chemistry (IUPAC) Harmonised Protocol [**11**]. Statistical analyses were performed along the lines of ISO 5725 [**12**] using the ProLab software [**13**].

3. Design of the study

3.1 The pre-trial

The collaborative pre-trial was conducted for the identification and quantification of the five mentioned *Alternaria* toxins in the range of 1.02 to 403 μ g/kg in tomato juice samples using the LC-MS/MS method provided by the EURL Mycotoxin. NRLs, Official Control Laboratories (OCLs), research and private mycotoxin laboratories were invited to participate in the pre-trial of the MVS. The aim of the pre-trial was to allow laboratories to familiarise with the method, to optimise instrument parameters where needed and, most important, to check the detection capability of laboratories' instruments in view of the anticipated working range.

The pre-trial was organised in two turns between March and July 2015. Three tomato juice test samples (pre-trial sample A, B and C) and one blank tomato juice (40 mL) were sent together with the working standard mixture solutions for matrix-matched calibration in dry ice to 25 participants. Only three laboratories out of twenty-five had experience with *Alternaria* toxin analysis. Consequently individually stock solutions were also provided for the laboratories to tune the LC-MS/MS instruments for these compounds. Initially, samples were dispatched to fifteen laboratories in March and the left over samples were sent to ten laboratories after the stability test in May. Collaborators were kindly requested to send back their results within two months after receipt of the samples.

Statistical analysis was performed along the lines of ISO 5725; the outliers and the noncompliant results were excluded from the evaluation. Results are summarised in (**Table 2**). Finally, those laboratories that could analyse all mycotoxins at least at the medium levels were invited to take part in the MVS. Sixteen participants registered for the full collaborative validation of the method including two laboratories that could not participate in the pre-trial, but they had experience in *Alternaria* LC-MS/MS analysis and had taken part in a recent proficiency test on *Alternaria* toxins in tomato juice.

	ALT			AOH			AME			TEN					
Sample	Pre- trial A	Pre- trial B	Pre- trial C												
Mean value (µg/kg)	1.02	48.8	5.36	1.54	46.02	7.18	1.17	38.0	5.15	45.8	4.55	403	5.03	< 1	47.3
Repeatability RSD_%	5.24	5.64	4.70	22.3	20.9	8.02	14.0	20.9	14.4	4.37	6.82	4.56	7.55		6.35
Reproducibility RSD_ _R %	15.6	20.3	11.8	29.2	21.8	24.2	21.1	20.9	22.7	19.4	23.2	24.5	27.6		26.0

Table 2: The pre-trial results.

3.2 Time frame

The pre-trial was open to all types of laboratories dealing with mycotoxin determination and capable to apply the method as described. The pre-trial and the MVS were first announced at the annual EURL/NRL workshop in October 2014. In addition, an announcement was sent to the NRLs and research laboratories by email after the workshop. Then, the MVS was published on the website of JRC. Those laboratories that demonstrated sufficient instrument detection capability in the pre-trial were invited to take part in the MVS. Laboratories were requested to register online using a link provided by the EURL Mycotoxin. After preparing the test materials (**Table 3** and **Annex 1**) for the MVS the outline of the study (**Annex 2**) and the subscription form (**Annex 3**) were sent out to the invited laboratories on 1^{st} of September with a deadline set on 18^{th} of September 2015. In total 16 laboratories registered to the MVS in September 2015.

The test items were dispatched on 6th of October 2015. The reporting deadline was 24th of November 2015.

3.3 Materials and documents

Each participant received:

- An accompanying letter with instructions (**Annex 4**).
- Eighteen units of coded samples in plastic containers (six test samples per matrix) with unknown identity to the participants.
- One blank sample per matrix for matrix-matched calibration.
- Two working standard mixture solutions in methanol for matrix-matched calibration.
- Two samples per matrix labelled "Spike I-II" and "Spike III-IV" for spiking experiments with unknown content of *Alternaria* toxins to the participants.
- Four standard mixture solutions in methanol for spiking experiments with unknown content of *Alternaria* toxins to the participants.
- Dimethyl sulfoxide (8 mL) for sample reconstitution.
- A materials receipt form (Annex 5)
- A spiking protocol (Annex 6)
- Laboratory specific files with the extension "*.LAB" and "*.LA2", which were generated by the ProLab software, were provided to each laboratory individually (personal files) by email upon dispatch. These files were needed for reporting results and filling out the questionnaire (**Annex 7** and **8**).
- A standard operation procedure (**Annex 9**)
- The critical steps (Annex 10)
- Eighty pieces of solid phase extraction cartridges (Strata-XL)
- Eighty pieces of syringe filters (Phenex PTFE)

3.4 Organisation

The 16 laboratories that enrolled in the collaborative trial represented a cross-section of research, private and OCLs from 11 EU Member States and Canada.

Participants had to fill in a questionnaire (**Annex 8**) where they were asked to report any deviations from the standard operation procedure they might have applied. This information was used to identify non compliances.

4. Test Materials

4.1 Description

Test materials were obtained from various sources and some cereal and sunflower seed materials were surplus materials from previous projects. Naturally contaminated tomato juice test samples were additionally spiked to obtain relevant concentration levels of all toxins in the method scope. The cereal and sunflower seed test samples were all naturally contaminated. Test items were remixed where necessary to meet the target levels and coded to maintain an unknown identity to the participants. Each of the contaminated samples and the samples for spiking were analysed as blind duplicates. Additionally one blank sample per matrix was also sent to each participant.

					_		
Sample	Test	Design	ALT	AOH	AME	TEN	TEA
description	Material	Design	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Sample A and B	Sorghum	Blind replicates	< 1	< 1	< 0.1	34.5	185
Sample C and D	Triticale	Blind replicates	< 1	116	10.6	9.79	67.7
Sample E and F	Wheat	Blind replicates	12.8	17.8	40.7	< 3	146
Sample G and H	Tomato juice	Blind replicates	5.49	5.70	6.04	141	171
Sample I and J	Tomato juice	Blind replicates	11.0	11.0	10.7	216	258
Sample K and L	Tomato juice	Blind replicates	20.9	20.6	18.7	523	597
Sample M and N	Unpeeled sunflower seeds	Blind replicates	< 1	23.1	1.88	22.9	615
Sample P and Q	Unpeeled sunflower seeds	Blind replicates	< 1	154	7.37	43.3	1370
Sample R and T	Sunflower mixture	Blind replicates	< 1	55.9	2.69	5.83	363
Spike I-II for cereals	Wheat	For spiking	< 1	< 1	< 0.1	< 1	< 1
Spike III-IV for cereals	Wheat	For spiking	< 1	< 1	< 0.1	< 1	< 1
Spike I-II for tomato	Tomato juice	For spiking	< 1	< 1	< 0.1	< 1	< 1

Table 3: The samples analysed in the MVS. Results are obtained from homogeneity test.

juice							
Spike III-IV for tomato juice	Tomato juice	For spiking	< 1	< 1	< 0.1	< 1	< 1
Spike I-II for sunflower	Peeled sunflower seeds	For spiking	< 1	< 1	< 0.5	4	20
Spike III-IV for sunflower	Peeled sunflower seeds	For spiking	< 1	< 1	< 0.5	4	20
Blank	Wheat	For calibration	< 1	< 1	< 0.1	< 1	< 1
Blank	Tomato juice	For calibration	< 1	< 1	< 0.1	< 1	< 1
Blank	Peeled sunflower seeds	For calibration	< 1	< 1	< 0.5	4	20

4.2 Preparation

4.2.1 Test samples

Cereal test items were milled using a centrifugal mill (ZM 200, Retsch, Haan, DE) with a 250 μ m sieve. The milled material was further homogenized for 4 hours in a Lödige laboratory mixer (Model L20, Paderborn, Germany).

Sunflower seeds were cryo-milled in liquid nitrogen. Test items were packed into plastic containers and labelled with a letter and three digit codes (**Table 3**). The amount of material in each container was about 20 g.

The tomato juice test samples (3 batches, each 2 L) were spiked with standard solutions to obtain the desired levels and homogenised individually with an Ultra Turrax T25 (Janke & Kunkel GmbH, Staufen, Germany) for 1 h at 13000 min⁻¹ speed. Then, they were transferred into glass bottles and shaken for 3 h at 200 min⁻¹ using a reciprocating shaker (Labortechnik GmbH, Burgwedel, Germany). In order to avoid the possibility of segregation of solids in the juice, aliquots of 10 mL were taken and filled into 15 mL plastic bottles, while the bulk test material was kept on a magnetic stirrer at 600 min⁻¹. Samples were labelled with a letter and three digit codes (**Table 3**). One hundred samples per batch were made. All samples were stored at -18 °C until dispatch.

Blank samples for each matrix were also provided for matrix-matched calibration. These blanks were also filled into the containers labelled "Spike I-II" and Spike "III-IV" (**Table 3**).

4.2.2 Common calibrants

The standard solutions supplied to participants were prepared from the following calibrants:

Altenuene (Toronto Research Chemicals Inc., cat: A575740, lot: 889101-41-1, 98%)
Alternariol (Sigma-Aldrich, cat: A1312, lot: 084M4167V, 97%)
Alternariol monomethyl ether (Sigma-Aldrich, cat: A3171, lot: 045M4017V, 99%)
Tentoxin (Sigma-Aldrich, cat: T8019, lot: 081M4101V, 99.2%)
Tenuazonic acid copper salt (Sigma-Aldrich, cat: T3408, lot: 015M4052V, 99%)

TEA stock solution was prepared from its copper salt and the concentration was checked according to Asam et al. **[6]**. The concentration of TEA stock solution was spectrophotometrically verified applying **Equation 1** below:

$$C_{TEA} = \frac{A_{\max}}{\varepsilon \times l}$$

Equation 1.

where

 C_{TEA} is the concentration of stock solution in mol/L;

 A_{max} is the absorption determined on wavelength of 277 nm;

- ε is the molar absorption coefficient of TEA in methanol (1.298x10⁴ L mol⁻¹ cm⁻¹)
- *l* is the optical path length of the quartz cell (1 cm).

Working standard mixture solutions (1 and 2), each with all *Alternaria* toxins covered in the MVS were supplied for calibration:

Working standard mixture solution 1:

Mixture of each 100 ng/mL of ALT, AOH and AME, 500 ng/mL of TEN and 1000 ng/mL of TEA in neat methanol.

Working standard mixture solution 2:

Mixture of each 500 ng/mL of ALT, AOH and AME, 2000 ng/mL of TEN and 5000 ng/mL of TEA in neat methanol..

About 50 vials (5 mL) were labelled each with either "Working standard solution 1" or "Working standard solution 2", subsequently filled with 4 mL of the respective solution and crimp-capped. The vials were stored at -18 °C until dispatch. Each participant received two vials (working standard solution 1 and 2). These solutions were used for matrix-matched calibration according to the SOP (**Annex 9**).

4.2.3 Spiking solutions and levels

Four mixed standard solutions containing all *Alternaria* toxins (toxins were the same as mentioned in section 4.2.2) in methanol labelled as "spiking solution A", "spiking solution B", "spiking solution C" and "spiking solution D" were supplied for fortification experiment. The spiking solutions A and B as well as C and D contained an identical solution. Therefore, the spiking experiment was performed at two different levels as blind duplicates.

Spiking solutions A and B:

stored at -18 °C until dispatch. Participants were asked to fortify the samples labelled as "Spike I-II" and "Spiked III-IV"

following the spiking protocol provided (**Annex 6**). The spiking volume was 100 μ L. The following spiking levels were set (**Table 4**):

Aliquots of 1.5 mL of the mixed standard solutions were filled in labelled HPLC vials and

Neat methanol solution containing each 40 ng/mL of ALT, AOH and AME as well

Neat methanol solution containing each 160 ng/mL of ALT, AOH and AME as well

Matrix	Level	ALT (µg/kg)	AOH (µg/kg)	AME (µg/kg)	TEN (µg/kg)	TEA (µg/kg)
Cereal	A - B	2.0	2.0	2.0	50	50
(wheat)	C - D	8.0	8.0	8.0	200	200
Tomato	A - B	2.0	2.0	2.0	50	50
juice	C - D	8.0	8.0	8.0	200	200
Sunflower	A - B	2.0	2.0	2.0	54	70
seed	C - D	8.0	8.0	8.0	204	220

Table 4: The contamination levels obtained after spiking.

as 1000 ng/mL of each TEN and TEA.

as 4000 ng/mL of each TEN and TEA.

Spiking solutions C and D:

Sunflower test material for spiking contained naturally 4 µg/kg TEN and 20 µg/kg TEA, resulting in final levels of 54 respectively 204 µg/kg TEN and 70 respectively 220 µg/kg TEA.

4.3 Homogeneity

Homogeneities of the test materials were evaluated according to chapter 3.11.2 of the Harmonised Protocol [11]. Ten units were randomly selected. The content of each unit was split and the two sub-samples were randomly analysed for all toxins by LC-MS/MS. No trend was observed during the analysis sequence and samples were found to be homogeneous (Annex 1). Sufficient homogeneity was assumed for the calibration and spiking solutions after mixing.

The target standard deviation was calculated using the Horwitz equation modified by Thompson [14]:

for analyte concentrations $< 120 \mu g/kg$

$$\sigma_{p} = 0.22 \cdot c$$

for analyte concentrations \geq 120 µg/kg

$$\sigma_p = 0.02 \cdot c^{0.8495}$$

where:

c is concentration of the measurand expressed as a dimensionless mass ratio, e.g. 1 ppb $= 10^{-9}, 1 \text{ ppm} = 10^{-6}.$

In such a case sampling variance should be:

$$\sigma^{2}_{sam} \leq 0.3\sigma_{n}$$

or for analyte concentrations $< 120 \,\mu g/kg$:

Equation 2.

Equation 3.

Equation 4.

$$\sigma^{2}_{sam} \leq 0.07c$$

Equation 5.

and for analyte concentrations \geq 120 µg/kg:

$$\sigma_{sam}^2 \leq 0.006 \cdot c^{0.8495}$$

Equation 6.

where: σ^2_{sam} : sampling variance

All test samples passed the criteria.

4.4 Stability

The samples were dispatched in Styropor containers with dry ice to maintain a temperature below 0 °C during shipping. Laboratories were requested to store the test materials at -18 °C upon arrival until analysis.

Test materials that remained at IRMM for stability testing were stored at +4 °C and -18 °C to verify stability, including -70°C as reference temperature. The amounts of mycotoxins in the test materials were monitored (n=2) over a period of eight weeks (from 06/10/2015 until 01/12/2015) with an isochronous stability test as it is suggested in the Harmonised Protocol [**15**]. No significant differences in the results of analysis for the tested dates (06/10/2015; 03/11/2015; 01/12/2015) were found. The materials proved to be adequately stable at +4 °C and -18 °C for the period between dispatch and the deadline for submission of results. This is in agreement with the finding of a recent proficiency test on *Alternaria* toxins in tomato juice [**16**], where test materials were considered stable at -18 °C for at least 4 months.

5. Results and discussions

5.1 General

Each participant reported the analytical results as listed in **Annex 11**. The results were subjected to statistical analysis including outlier removal using ProLab **[13]** and the performance characteristics were calculated as shown in **(Table 5-9)**.

The Horwitz ratio (HorRat) values were derived from the Horwitz function modified by Thompson, leading to a constant target standard deviation of 22% for analyte levels below 120 μ g/kg [**14**]. A HorRat value between 0.5 and 2.0 is considered to be satisfactory.

Nine naturally contaminated test materials (3 samples per matrix in blind duplicates) were analysed. Furthermore, 2 spiked samples per matrix (low and high levels) in blind duplicates were also measured. Participant answers were checked for deviations from the method protocol. The protocol required blind duplicate analyses, therefore single results were considered non-compliant. Also, the submitted chromatograms were checked to identify results not meeting the identification criteria (i.e. ion ratio error, low chromatographic resolution) set in the SOP. Non-compliant data were removed prior to statistical evaluation. The remaining results underwent statistical data analysis (Grubbs tests applied to single and then multiple suspect mean measurement values and Cochran test applied to any suspect repeatability variances). Statistical analyses were performed along the lines of ISO 5725 [12, 14]. The functional relationships between the repeatability/reproducibility standard deviation and the measured value were calculated as described in ISO 5725 Part 2 [12] by ProLab software. The results showed that the repeatability for most of the cases was adequate at the validation levels (< 20%), but the reproducibility was higher than 30% for some particular compounds. This suggests that the different LC-MS/MS instruments, in particular their ion sources, used in this study were differently affected by matrix components.

Recoveries were obtained from the values reported for the spiked samples (low and high levels) by applying **Equation 7**. The satisfactory range for recovery was set between 70% and 110%.

$$R\% = \frac{C_{toxin, recovered}}{C_{toxin, spiked}} x100$$

Equation 7.

5.2 Evaluation of questionnaire – deviations from the method description

All answers to the questionnaire were compiled in the tables in **Annex 13**. All participants were familiar with most of the steps performed during the analysis. According to the collaborators the sample reconstitution step before injection into the LC-MS/MS may be improved. However, the high differences in the polarity of toxins do not allow reconstitution after evaporation to dryness. As CEN/TC 275/WG 5 delegates required the determination of underivatised a suitable procedure had to be implemented allowing the complete dissolution of all *Alternaria* toxins. Taking into account the high polarity and mass fraction range of TEA a polar solvent is favourable for TEA. Furthermore, the chromatographic separation required a polar injection solution (90% water), in order to not deteriorate completely the peak shape of TEA. For the non-polar toxins like AME reconstitution with pure methanol would be favourable, as it was demonstrated in [**10**], but cannot be used because of the short-comings mentioned

above for TEA. Therefore, DMSO was used to aid the reconstitution of the lesser polar toxins, inhibiting a complete dryness state during evaporation.

This sample reconstitution detailed in the SOP was found to be better than the complete evaporation of the eluate after the clean-up during method development. The sample reconstitution has then been done in a 90% water-based solvent, because the mobile phase has the same composition when the sample injection takes place.

Critical points considered for possible non-compliance were significant deviations from the method description and problems/abnormalities reported by the participants (**Annex 13**). Each laboratory followed the provided standard operation procedure step by step, but some problems occurred for participants.

Laboratory 603 reported a problem with the instrumental analysis of sunflower seed and tomato juice samples (**Annex 13**). None of the tomato juice samples could be analysed. The results for sunflower seed samples were rather different to those obtained by other laboratories. This could have been caused due to the HPLC separation problem reported, therefore only the results for cereals were considered for laboratory 603.

Laboratory 612 reported that they did not follow the sample reconstitution step outlined in the SOP (**Annex 13**). This was only for tomato juice samples that were analysed on the first day. The other samples were manipulated appropriately. Consequently, the results on tomato juices were not considered for laboratory 612.

Laboratory 613 reported that the operator who participated in the pre-trial was not available to perform the analysis. Therefore measurements were done by different staff members. It appeared from the results that sometimes the parallel samples were swapped (i.e. Sample P, Q, R, T) or compound identification problems occurred. Hence, clarification on the results was requested, but no answer was returned. The questionnaire that offered room for explaining these problems was not filled out by laboratory 613 (**Annex 13**). Therefore, all the results of laboratory 613 were considered as non-compliant.

Laboratory 614, which did not participate in the pre-trial, reported ion ratio problems in several samples, mainly for ALT, AME and TEN at both low and high concentration levels. In addition, the concentrations detected in the parallel samples showed big differences for some particular compounds. This suggested that the instrument used for analysis was not optimised appropriately, and also unknown matrix interference could play a role. These are evidenced by the chromatograms submitted. Consequently, the results of laboratory 614 were considered as non-compliant.

5.3 Evaluation of chromatograms

Participants were requested to send chromatograms for the analysed samples. They were checked by the study organiser for sufficient resolution between the analyte peaks and neighbouring peaks. Moreover, chromatograms were checked for consistency in the retention time of the *Alternaria* toxin peaks and for sufficient peak intensity.

In the case of laboratory 615 matrix interferences could be seen on the chromatogram of ALT in cereal samples. In addition, the chromatogram of ALT in sunflower showed poor peak intensity for this compound. However, the determination of ALT in tomato juice sample was not compromised by other matrix peaks. The results of laboratory 615 for ALT were considered as non-compliant in cereal and sunflower seed samples due to the non-selective separation and poor peak intensity.

5.4 Evaluation of results

Sample description	Sample A, B	Sample C. D	Sample E, F	Spiked	Spiked	Sample G, H	Sample I, J	Sample K, L	Spiked	Spiked	Sample M, N	Sample P, Q	Sample R, T	Spiked	Spiked	
Matrix	<u>, </u>	С, В	Cereals			0, 11		Fomato juico	e		Sunflower seeds					
Sample	Sorghum	Triticale	Wheat	Low level	High level	Tomato juice	Tomato juice	Tomato juice	Low level	High level	Unpeeled	Unpeeled	Mixture	Low level	High level	
Number of reported results			16	12	15	15	15	15	12	15				12	15	
Number of laboratories considered as non- compliant			3	2	3	3	2	3	3	3				3	5	
Number of outliers (laboratories)			0	0	0	1	1	1	0	1				1	0	
Number of accepted (quantitative) results			13	10	12	11	12	11	9	11				9	10	
Mean value, $\overset{-}{x}$, µg/kg	< 1	< 1	19.5	1.62	6.1	7.67	11.9	24.3	2.15	7.81	< 1	< 1	< 1	1.52	6.71	
Repeatability standard deviation <i>sr</i> , µg/kg			3.47	0.22	0.37	0.45	1.6	1.31	0.3	0.84				0.24	0.53	
Repeatability relative standard deviation, <i>RSD</i> _r ,%			17.8	13.5	6.13	5.83	13.4	5.39	13.8	10.8				15.8	7.9	
Repeatability limit $r [r = 2,8 \times s_r]$, µg/kg			9.6	0.61	1.03	1.24	4.42	3.63	0.82	2.33				0.67	1.47	
Reproducibility standard deviation <i>s_R</i> , µg/kg			5.5	0.56	1.63	1.13	1.89	4.32	0.42	1.69				0.65	1.67	
Reproducibility relative standard deviation, <i>RSD_R</i> , %			28.2	34.8	26.8	14.7	15.9	17.8	19.4	21.6				43.0	24.9	
Reproducibility limit R [R = 2,8 × s_R], μ g/kg			15.2	1.56	4.52	3.13	5.24	12	1.15	4.68				1.81	4.62	
Recovery%			n.a.	81	76	n.a.	n.a.	n.a.	107	98				76	84	
Relative target standard deviation %			22	22	22	22	22	22	22	22				22	22	
HorRat value			1.3	1.6	1.2	0.7	0.7	0.8	0.9	1.0				2.0	1.1	

Sample description	Sample A, B	Sample C, D	Sample E, F	Spiked	Spiked	Sample G, H	Sample I, J	Sample K, L	Spiked	Spiked	Sample M, N	Sample P, Q	Sample R, T	Spiked	Spiked
Matrix			Cereals				1	lomato juic	e			Sur	nflower seed	s	
Sample	Sorghum	Triticale	Wheat	Low level	High level	Tomato juice	Tomato juice	Tomato juice	Low level	High level	Unpeeled	Unpeeled	Mixture	Low level	High level
Number of reported results		15	16	16	15	15	15	15	14	15	16	16	16	14	16
Number of laboratories considered as non- compliant		2	2	2	3	3	5	4	3	3	3	3	4	3	3
Number of outliers (laboratories)		1	1	2	0	1	0	1	1	0	0	0	0	1	0
Number of accepted (quantitative) results		12	13	12	12	11	10	10	10	12	13	13	12	10	13
 Mean value, , μg/kg	<1	95.9	13.4	1.84	6.03	5.61	8.77	18.6	2.07	7.17	22.9	139	46.8	1.86	6.05
Repeatability standard deviation <i>sr</i> , µg/kg		16.7	2.67	0.31	0.70	1.52	1.9	2.52	0.26	0.69	2.55	10.1	2.57	0.3	0.59
Repeatability relative standard deviation, <i>RSD_r</i> , %		17.4	20	16.9	11.5	27.1	21.7	13.6	12.3	9.67	11.1	7.25	5.48	16.1	9.72
Repeatability limit $r [r = 2,8 \times s_r]$, µg/kg		46.2	7.39	0.86	1.93	4.21	5.26	6.98	0.71	1.92	7.08	28.1	7.11	0.83	1.63
Reproducibility standard deviation <i>s_R</i> , µg/kg		37.7	3.97	0.49	1.82	2.15	2.37	6.8	0.92	1.11	7.17	41.5	12.3	0.62	1.10
Reproducibility relative standard deviation, <i>RSD_R</i> , %		39.4	29.8	26.7	30.2	38.3	27	36.6	44.3	15.5	31.3	29.7	26.2	33.1	18.2
Reproducibility limit R [R = 2,8 × s_R], μ g/kg		104	11	1.36	5.1	5.96	6.57	18.8	2.54	3.07	19.9	114	33.9	1.71	3.06
Recovery%		n.a.	n.a.	92	75	n.a.	n.a.	n.a.	103	90	n.a.	n.a.	n.a.	93	76
Relative target standard deviation %		22	22	22	22	22	22	22	22	22	22	21.5	22	22	22
HorRat value		1.8	1.4	1.2	1.4	1.7	1.2	1.7	2.0	0.7	1.4	1.4	1.2	1.5	0.8

Table 6: Performance characteristics for AOH calculated for each sample analysed during the collaborative trial study.

Sample description	Sample A, B	Sample C, D	Sample E, F	Spiked	Spiked	Sample G, H	Sample I, J	Sample K, L	Spiked	Spiked	Sample M, N	Sample P, Q	Sample R, T	Spiked	Spiked
Matrix			Cereals					Fomato juico	9			Sur	flower seeds	5	
Sample	Sorghum	Triticale	Wheat	Low level	High level	Tomato juice	Tomato juice	Tomato juice	Low level	High level	Unpeeled	Unpeeled	Mixture	Low level	High level
Number of reported results		15	16	15	15	15	15	15	13	14	14	15	15	15	16
Number of laboratories considered as non- compliant		1	3	2	4	3	4	3	3	4	2	1	3	4	2
Number of outliers (laboratories)		0	0	0	0	1	1	1	1	0	3	2	2	1	1
Number of accepted (quantitative) results		14	13	13	11	11	10	11	9	10	9	12	10	10	13
 Mean value, X , μg/kg	< 0.1	8.66	38.1	1.45	4.96	4.78	7.36	14.2	1.93	5.38	1.58	6.77	1.61	1.49	4.24
Repeatability standard deviation <i>s</i> r, µg/kg		1.35	13.3	0.25	0.91	1.39	2.04	2.29	0.37	0.68	0.48	1.20	0.19	0.26	0.55
Repeatability relative standard deviation, RSDr, %		15.5	34.8	17.6	18.3	29.1	27.7	16.2	19	12.7	30.2	17.7	11.9	17.6	13.0
Repeatability limit $r [r = 2,8 \times s_r]$, µg/kg		3.73	36.7	0.70	2.51	3.85	5.64	6.35	1.02	1.89	1.32	3.32	0.53	0.73	1.52
Reproducibility standard deviation <i>s_R</i> , µg/kg		3.32	16.6	0.52	1.90	1.39	2.86	5.40	0.96	2.12	0.68	2.62	0.46	0.58	1.65
Reproducibility relative standard deviation, <i>RSD_R</i> , %		38.4	43.7	36	38.2	29.1	38.9	38.1	49.6	39.3	43	38.7	28.7	39.1	38.9
Reproducibility limit R [R = 2,8 × s_R], μ g/kg		9.21	46.1	1.45	5.26	3.85	7.93	15.0	2.65	5.86	1.88	7.25	1.28	1.62	4.56
Recovery%		n.a.	n.a.	72	62	n.a.	n.a.	n.a.	97	67	n.a.	n.a.	n.a.	75	53
Relative target standard deviation %		22	22	22	22	22	22	22	22	22	22	22	22	22	22
HorRat value		1.7	2.0	1.6	1.7	1.3	1.8	1.7	2.3	1.8	2.0	1.8	1.3	1.8	1.8

Table 7: Performance characteristics for AME calculated for each sample analysed during the collaborative trial study.

Sample description	Sample A, B	Sample C, D	Sample E, F	Spiked	Spiked	Sample G, H	Sample I. J	Sample K, L	Spiked	Spiked	Sample M, N	Sample P, Q	Sample R, T	Spiked	Spiked
Matrix			Cereals				1	romato juico	e				flower seeds	5	
Sample	Sorghum	Triticale	Wheat	Low level	High level	Tomato juice	Tomato juice	Tomato juice	Low level	High level	Unpeeled	Unpeeled	Mixture	Low level	High level
Number of reported results	15	16		16	14	15	15	15	15	15	16	16	16	16	16
Number of laboratories considered as non- compliant	2	4		2	1	3	3	3	3	4	5	4	4	4	3
Number of outliers (laboratories)	1	0		0	0	1	1	1	1	1	0	0	2	1	0
Number of accepted (quantitative) results	12	12		14	13	11	11	11	11	10	11	12	10	11	13
 Mean value, , μg/kg	51.4	10.4	< 3	40.8	162	152	232	465	48.7	185	36.3	63.5	10.0	45.2	180
Repeatability standard deviation <i>sr</i> , µg/kg	3.12	0.84		3.65	7.93	9.81	8.44	20.9	2.76	5.23	4.89	7.18	0.49	3.28	11.3
Repeatability relative standard deviation, <i>RSD</i> _r , %	6.07	8.09		8.94	4.9	6.45	3.64	4.49	5.67	2.82	13.5	11.3	4.85	7.25	6.28
Repeatability limit $r [r = 2,8 \times s_r]$, µg/kg	8.65	2.34		10.1	22.0	27.2	23.4	57.8	7.65	14.5	13.5	19.9	1.35	9.09	31.4
Reproducibility standard deviation <i>s_R</i> , µg/kg	19.2	2.9		10.3	30.5	20.8	17.9	72.8	8.56	20.7	10.1	20.8	3.69	5.12	22.0
Reproducibility relative standard deviation, <i>RSD_R</i> , %	37.3	27.9		25.2	18.8	13.7	7.71	15.7	17.6	11.2	27.7	32.8	36.8	11.3	12.2
Reproducibility limit R [R = 2,8 × s_R], μ g/kg	53.2	8.04		28.4	84.4	57.5	49.6	202	23.7	57.3	28.0	57.7	10.2	14.2	60.9
Recovery%	n.a.	n.a.		82	81	n.a.	n.a.	n.a.	90	91	n.a.	n.a.	n.a.	90	90
Relative target standard deviation %	22	22		22	21	21.2	19.9	18	22	20.6	22	22	22	22	20.7
HorRat value	1.7	1.3		1.2	0.9	0.6	0.4	0.9	0.8	0.5	1.3	1.5	1.7	0.5	0.6

Table 8: Performance characteristics for TEN calculated for each sample analysed during the collaborative trial study.

Sample description	Sample A, B	Sample C, D	Sample E, F	Spiked	Spiked	Sample G, H	Sample I. J	Sample K, L	Spiked	Spiked	Sample M, N	Sample P. Q	Sample R, T	Spiked	Spiked
Matrix			Cereals				1	romato juico	e			Sur	flower seed	5	
Sample	Sorghum	Triticale	Wheat	Low level	High level	Tomato juice	Tomato juice	Tomato juice	Low level	High level	Unpeeled	Unpeeled	Mixture	Low level	High level
Number of reported results	16	16	16	16	15	15	15	15	15	15	15	15	16	16	16
Number of laboratories considered as non- compliant	3	4	2	2	3	3	3	4	3	3	5	4	5	5	4
Number of outliers (laboratories)	0	0	0	0	0	2	2	3	2	2	0	0	0	0	0
Number of accepted (quantitative) results	13	12	14	14	12	10	10	8	10	10	10	11	11	11	12
 Mean value, , μg/kg	206	57.1	125	46.9	165	168	259	563	51.5	186	804	1102	452	53	153
Repeatability standard deviation <i>sr</i> , µg/kg	33.8	7.27	14.2	3.91	12.7	11.3	8.44	11.2	2.26	4.35	151	164	68.9	5.49	17.7
Repeatability relative standard deviation, <i>RSDr</i> , %	16.4	12.7	11.4	8.32	7.7	6.76	3.26	2.0	4.39	2.33	18.8	14.9	15.3	10.4	11.6
Repeatability limit $r [r = 2,8 \times s_r]$, µg/kg	93.6	20.1	39.3	10.8	35.2	31.4	23.4	31.0	6.27	12.0	418	454	191	15.2	49.0
Reproducibility standard deviation <i>s</i> _{<i>R</i>} , µg/kg	57.3	21.8	27.9	9.09	21.8	25.8	31.8	76.2	7.15	19.8	318	422	198	18.9	39.4
Reproducibility relative standard deviation, <i>RSD_R</i> , %	27.9	38.2	22.4	19.4	13.2	15.4	12.3	13.5	13.9	10.6	39.5	38.3	43.7	35.7	25.8
Reproducibility limit R [R = 2,8 × s_R], μ g/kg	159	60.4	77.2	25.1	60.5	71.6	88.0	211	19.8	54.9	880	1170	547	52.4	109
Recovery, %	n.a.	n.a.	n.a.	94	82	n.a.	n.a.	n.a.	74	85	n.a.	n.a.	n.a.	76	70
Relative target standard deviation %	20.3	22	21.9	22	21	20.9	19.6	17.4	22	20.6	16.5	15.8	18	22	21.2
HorRat value	1.4	1.7	1.0	0.9	0.6	0.7	0.6	0.8	0.6	0.5	2.4	2.4	2.4	1.6	1.2

Table 9: Performance characteristics for TEA calculated for each sample analysed during the collaborative trial study.

As EU legislation for food requires to consider analyte recovery for accepting or rejection of lots in official food control, the principle of recovery correction was applied for the calculation of method performance in this study. As a result, the data sets of the analytical results from naturally contaminated materials were corrected with the mean recovery value of the recovery experiments (two duplicates). The result of this treatment on the calculated method performance is shown in **Annex 12**. A correction for recovery with the data generated by spiking experiments did not change to a significant extent the reproducibility of the method.

6. Interpretation of the results and conclusions

In total, 15 samples (five samples per matrix) had to be analysed as blind duplicates during the MVS. The applicable range was found to be 1.61 to 1102 μ g/kg across different *Alternaria* toxins in the naturally contaminated samples. The required range was 1 to 1000 μ g/kg.

The repeatability was below 20% for ALT, TEN and TEA, but exceeded 20% for AOH and AME in two and three samples, respectively. Overall, the repeatability varied between 2.0% and 34.8%.

The reproducibility ranged from 7.7% to 49.6%, reflecting HorRat values from 0.5 to 2.4 according to the Horwitz function modified by Thompson. . HorRat values were between 0.4 and 2.0 for ALT, AOH and TEN. HorRat values higher than 2 were calculated for AME and TEA in one and three samples, respectively. In the case of AME a HorRat value of 2.3 was computed for spiked tomato juice. A HorRat value of 2.4 was calculated for TEA in all naturally contaminated sunflowers, while HorRat values of 1.2 and 1.6 were obtained for TEA in spiked sunflower samples. HorRat values calculated for TEN in spiked sunflower samples were three times better than those obtained in naturally contaminated sunflower samples. These are thought to be because the matrix matched calibration as well as the spiking experiments were done using peeled sunflower material. Unpeeled sunflower seeds could not be used for matrix matched calibration, because all available materials of that kind contained high levels of Alternaria toxins. However, unpeeled sunflower seeds were needed to obtain test material with sufficient levels of natural contamination. This represents a more complex matrix than the peeled sunflower seeds. These differences in performance characteristics seen between peeled and unpeeled sunflower seeds demonstrate that matrix effects influence the determination of Alternaria toxins.

These matrix effects have been compensated using stable isotope labelled internal standards in studies on other mycotoxins in complex matrices [**9**]. However, the stable labelled standards needed for this MVS are currently not commercially available for *Alternatria* toxins.

Recoveries for *Alternaria* toxins were between 70% and 110%, with the exception of AME. This is due to the low solubility of AME in the water based injection solution and to the high matrix effect in the ion source caused by the co-eluting matrix compounds. The recoveries for AME varied from 53% to 67% at the higher level (8 μ g/kg), while the recoveries were above 70% for AME at the lower level (2 μ g/kg). Overall, mean absolute recoveries ranged from 53% to 107%.

Low precision and recovery were due to the strong matrix effects caused by the coeluting matrix solutes, in agreement with what has recently been found by Walravens et al. [10] and Tölgyesi et al. [17]. In addition, the wide polarity difference (**Figure 1**) between *Alternaria* toxins also influenced the performance characteristics. The sample reconstitution in water-based injection solution is prone to lead to low recoveries for AME, the most non-polar compound in this study.

In order to allow the injection of TEA onto the HPLC system with injection solutions containing higher amounts of organic solvent, a pentafluorophenyl (F5) column was tested. These column types are alternatives to standard C-18 reversed phase columns, generally providing a good separation of both polar and non-polar compounds, thus offering improved peak parameters – especially for TEA – as well as better resolution for the remaining toxins of interest. However, this approach failed to give an acceptable peak shape for TEA, in both, acidic and alkaline mobile phases (**Annex 14**). As a result, the method protocol will include a standard C-18 HPLC column, while the organic solvent fraction in the injection solvent could not be increased to a level of >10% and required the use of DMSO. This means that injecting underivatised TEA together with the lesser polar toxins remained a critical compromise between a sufficient peak shape for TEA on

one hand and the quantitative re-dissolution of the less polar toxins, such as AOH and AME on the other hand, especially taking into account the desired measurement capacity.

As a result the method will be submitted to CEN TC 275 / WG 5 for consideration as basis for a future CEN standard.

References

- Devari, S. et al. 2014. Capsaicin production by *Alternaria alternata*, an endophytic fungus from *Capsicum annum*; LC–ESI–MS/MS analysis. Phytochemistry 98:183– 189.
- [2] European Food Safety Authority (EFSA). 2011. Scientific Opinion on the risks for public and animal health related to the presence of *Alternaria* toxins in food and feed. EFSA J. 9(10):1–97.
- [3] European Commission. 2006. COMMISSION REGULATION (EC), No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union. L 364/5.
- [4] Ostry V. 2008. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 1(2):175–188.
- [5] Mikula, H., Horkel, E., Hans, P., Hametner, C., Fröhlich, J. 2013. Structure and tautomerism of tenuazonic acid A synergetic computational and spectroscopic approach. J Hazard Mater. 250-251:308-317.
- [6] Asam, S., Konitzer, K., Schieberle, P., Rychlik, M. 2009. Stable Isotope Dilution Assays of Alternariol and Alternariol Monomethyl Ether in Beverages. J Agr Food Chem. 57:5152–5160
- [7] Lerda, D., Ambrosio, M., Kunsagi, Z., Emteborg, H., Charoud-Got, J., Stroka, J. 2011. Report on the inter-laboratory comparison organised by the European Union Reference Laboratory for Mycotoxins for the validation of a method for the determination of Ochratoxin A in liqourice roots and extracts. EUR 24778 EN: 2011
- [8] Kunsagi, Z., Stroka, J. 2014. Determination of Ochratoxin A in Capsicum spp. (Paprika and Chili) by Immunoaffinity Column Cleanup and Liquid Chromatography: Collaborative Study. J AOAC Int. 97(3):876–883.
- [9] Kujawski, M., Stroka, J. 2015. Method Validation Study Report on Multimethod for mycotoxins in feed materials and compound feed by LC-MS. *Report in draft.*
- [10] Tölgyesi, Á., Stroka, J., Tamosiunas, V., Zwickel, T. 2015. Simultaneous analysis of *Alternaria* toxins and citrinin in tomato: an optimised method using liquid chromatography-tandem mass spectrometry. J Food Add Contam 32:1512–1522.
- [11] Thompson, M., Ellison, S.L.R., and Wood, R. 2006. The International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories. Pure Appl. Chem. 78(1):145–196.

http://media.iupac.org/publications/pac/2006/pdf/7801x0145.pdf

- [12] Practical guide to ISO 5725-2:1994 Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method. Geneva, Switzerland
- [13] Software for PT programs and collaborative studies, ProLab;

http://quodata.de/en/software/for-interlaboratory-tests.html

[14] Thompson, M. 2000. Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. Analyst 125:385-386.

[15] Lamberty, A, Schimmel, H, Pauwels J. 1998. The study of the stability of reference materials by isochronous measurements. Fresenius J Anal Chem 360:359-361.

http://link.springer.com/content/pdf/10.1007/s002160050711.pdf

- [16] Zwickel T. 2014. Vorläufige Fassung Laborvergleichsuntersuchung zur Bestimmung der Alternaria-Toxine Tenuazonsäure, Alternariol, Tentoxin, Altenuen und Alternariolmonomethylether in Tomatensaft. Proficiency Test Report. Bundesinstitut für Risikobewertung (BfR) Nationales Referenzlabor für Mykotoxine.
- [17] Walravens et al. 2014. Development and validation of an ultra-high-performance liquidchromatography tandem mass spectrometric method for thesimultaneous determination of free and conjugated Alternaria toxinsin cereal-based foodstuffs. J. Chromatogr. A 1372:91–101.

List of abbreviations and definitions

ALT	Altenuene
AME	Alternariol monomethyl ether
АОН	Alternariol
CEN	European Committee for Standardisation
EC	European Commission
EU	European Union
EURL	European Union Reference Laboratory
F5 column	Pentafluorophenyl column
HPLC	High-performance liquid chromatography
IRMM	Institute for Reference Materials and Measurements
ISO	International Organisation for Standardisation
IUPAC	International Union for Pure and Applied Chemistry
JRC	Joint Research Centre
LC-MS/MS	Liquid chromatography tandem mass spectrometry
TEA	Tenuazonic acid
TEN	Tentoxin

Repeatability: Precision under repeatability conditions, i.e. conditions where independent test results are obtained with the same method on identical test items in the same laboratory by the same operator using the same equipment within short intervals of time. (ISO 3534-1)

Reproducibility: Precision under reproducibility conditions, i.e. conditions where test results are obtained with the same method on identical test items in different laboratories with different operators using different equipment. (ISO 3534-1)

HorRat value: ratio of the reproducibility relative standard deviation to the target standard deviation (calculated by Horwitz equation modified by Thompson for the concentration below 120 ppb)

Cochran test: removal of laboratories showing significantly greater variability among replicate (within-laboratory) analyses than the other laboratories for a given material

Grubbs test: removal of laboratories with extreme averages

7. Annexes

7.1 Annex 1 – Homogeneity

Concentrations given here may be different from the consensus values of results of participants. These are rough estimates of concentrations obtained with other calibration solution. All data below is given in $[\mu g/kg]$.

Homogeneity	Analyte				
according to IUPAC	ALT	AOH	AME	TEN	TEA
Mean	< 1	< 1	< 0.1	34.5	185
ô				7.60	40.8
σ^2_{all}				5.19	150
σ^2_{an}				4.14	149
critical value ($F_1 \sigma_{all}^2 + F_2 \sigma_{an}^2$)				13.9	431
σ^2_{sam}				3.71	34.3
σ^{2}_{sam} < critical	n.a	n.a	n.a.	Passed	Passed

Sample A and B

n.a.: not applicable

Sample C and D

Homogeneity	Analyte				
according to IUPAC	ALT	AOH	AME	TEN	TEA
Mean	< 1	116	10.6	9.79	67.4
ô		46.5	4.1	2.15	14.8
σ^2_{all}		193	1.53	0.417	19.8
σ^2_{an}		102	1.50	0.769	71.8
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)		470	3.09	1.56	109.8
σ^2_{sam}		192	1.50	0.025	0.0
σ^{2}_{sam} < critical	n.a	Passed	Passed	Passed	Passed

Sample E and F

Homogeneity	Analyte				
according to IUPAC	ALT	AOH	AME	TEN	TEA
Mean	12.8	17.8	40.7	< 2	146
ô	2.81	3.92	8.95		35.1
σ^2_{all}	0.707	1.38	7.20		111
σ^2_{an}	0.915	0.961	26.3		261
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)	2.25	3.57	40.1		472
σ^2_{sam}	0.137	0.467	0.0		107
σ^{2}_{sam} < critical	Passed	Passed	Passed	n.a	Passed

n.a.: not applicable

Sample G and H

Homogeneity	Analyte				
according to IUPAC	ALT	АОН	AME	TEN	TEA
Mean	5.49	5.70	6.04	141	171
ô	1.21	1.25	1.33	31.0	37.6
σ^2_{all}	0.131	0.141	0.159	86.2	127
σ^2_{an}	0.334	0.164	0.459	48.4	173
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)	0.58	0.43	0.76	211	415
σ^2_{sam}	0.019	0.0	0.0	5.58	0.0
σ^2_{sam} < critical	Passed	Passed	Passed	Passed	Passed

Sample I and J

Homogeneity	Analyte				
according to IUPAC	ALT	AOH	AME	TEN	TEA
Mean	11.0	11.0	10.7	216	258
ô	2.43	2.43	2.35	47.6	56.8
σ^2_{all}	0.530	0.530	0.496	204	291
σ^2_{an}	0.308	0.30	1.87	194	540
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)	1.31	1.30	2.82	579	1092
σ^2_{sam}	0.317	0.158	0.0	71.5	0.0
σ^2_{sam} < critical	Passed	Passed	Passed	Passed	Passed

Sample K and L

Homogeneity	Analyte				
according to IUPAC	ALT	AOH	AME	TEN	TEA
Mean	20.9	20.6	18.7	523	597
ô	4.59	4.52	4.11	115	131
σ^2_{all}	1.89	1.84	1.52	1190	1550
σ^2_{an}	3.42	3.038	3.16	1005	2132
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)	7.02	6.53	6.05	3253	5069
σ^2_{sam}	0.0	0.0	0.684	415	276
σ^{2}_{sam} < critical	Passed	Passed	Passed	Passed	Passed

Sample M and N

Homogeneity	Analyte				
according to IUPAC	ALT	АОН	AME	TEN	TEA
Mean	< 1	23.1	1.88	22.9	615
ô		5.082	0.414	5.049	148
σ^2_{all}		2.32	0.015	2.29	1963
σ^2_{an}		5.82	0.1312	25.5	12902
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)		10.3	0.16	30.1	16724
σ^2_{sam}		0.019	0.011	0.34	0.0
σ^{2}_{sam} < critical	n.a	Passed	Passed	Passed	Passed

n.a.: not applicable

Sample P and Q

Homogeneity	Analyte				
according to IUPAC	ALT	АОН	AME	TEN	TEA
Mean	< 1	154	7.37	43.3	1370
$\hat{\sigma}$		49.3	2.21	9.52	301
σ^2_{all}		656	0.44	8.15	8176
σ^2_{an}		123	1.12	18.33	9334
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)		536	1.97	33.8	24800
σ^2_{sam}		207	0.373	26.3	10095
σ^2_{sam} < critical	n.a	Passed	Passed	Passed	Passed

Sample R and T

Homogeneity	Analyte				
according to IUPAC	ALT	АОН	AME	TEN	TEA
Mean	< 1	55.9	2.69	5.83	363
ô		12.3	0.591	1.34	79.9
σ^2_{all}		13.6	0.031	0.162	574
σ^2_{an}		40.9	0.397	0.508	1701
critical value ($F_1 \sigma^2_{all} + F_2 \sigma^2_{an}$)		67	0.46	0.82	2798
σ^2_{sam}		8.67	0.0	0.155	1818
σ^{2}_{sam} < critical	n.a	Passed	Passed	Passed	Passed

7.2 Annex 2 – Outline of the study

LUNCPEAN COMMISSION JOINT RESEARCH CENTRE Institute for Reference Materials and Measurements European Union Reference Laboratory for Nycotoxins Geel, 22 September 2015	 The spiking protocol. A "Material receipt form". If the materials/consumables have been received damaged, immediately request a new one (the materials and standard solutions will be shipped in dry ice; store the samples at -18 °C until subjected to analysis). Second parcel will contain the following items: Two Alternaria working standard mixture solutions (1 and 2) to be used for preparing the calibration solutions.
Method validation study on the determination of <i>Alternaria</i> toxins in wheat, tomato juice and sunflower seeds by solid phase extraction clean-up and liquid chromatography with tandem mass spectrometric detection	 Four Alternaría spiking standard mixture solutions (A, B, C and D) to be used for fortifying the samples. Dimethyl sulfoxide (DMSO) for sample reconstitution (store the DMSO at room temperature).
Dear Participant, The EU-RL Mycotoxins organises a method validation study (by inter-laboratory comparison) on the determination of <i>Alternaria</i> toxins in wheat, tomato juice and sunflower seeds. The study is foreseen to take place in October 2015 . <u>Please read the following information carefully.</u>	 4. A set of samples, comprising: a. Six test materials/matrix for single analysis with different content levels of <i>Alternaria</i> toxins. b. One blank sample/matrix to be used for matrix-matched calibration and for blank. c. Two samples/matrix to be used for preparing the spiked samples.
Timing	Participants will also receive by email, after dispatch of samples, instructions how to report results and fill in the questionnaire using <u>ProLab</u> software.
Participants will receive two weeks before the starting of the exercise a preannouncement of the sample dispatch. A second reminder will be sent the day before dispatch of samples and participants will receive a dispatch note containing all data for tracking the shipment.	Participants will be asked to analyse each sample once and to report the requested results in µg/kg for both test materials andspiked samples. They will be also asked to send to the organiser the chromatograms of calibration solutions and samples as specified the SOP.
We ask you to report results back within six weeks; including the modalities which will be detailed in following communications.	In case of questions please do not hesitate to contact us at the following address:
Materials supplied for the study Participants will receive two parcels: one parcel will be sent at room temperature, the other will be dispatchedin dry ice. First parcel will contain the followingitems: 1. The necessary solid phase extraction columns and syringe filters (taking also into account possible repetition of a failed analysis).	Adám Tolgyesi Institute for Reference Materials and Measurements (IRMM) EU-RL Mycotoxins Retizesweg 111 B-2440 Geel, Belgium Td: +32-14-571 313 FAX: +32-14-573 015 E-mail: jrc-imm-eurl-mycotox@ec.europa.eu
 The standard operating procedure (SOP) to be applied for the analysis of the test samples and the spiked samples. A manual on the critical steps. 	With kind regards, Ádám Tölgyesi

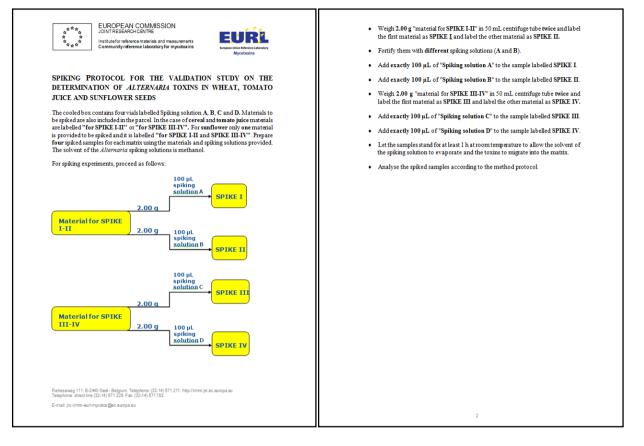
Пп

7.3 Annex 3 – Subscription form

٦Г

<image/> <image/> <image/> <image/> <text><text><text></text></text></text>	 Having read the attached method and the outline of the study, we understand that: All essential apparatus, chemicals and other requirements specified in the method protocol attached to this form must be available in our laboratory when the programme begins; Turning requirements, such as starting date, order of testing specimens and time for reporting will be respected and possible delay communicated in due time; The method must be strictly followed; Samples must be handled according to instructions; A qualified operator must perform the measurements; Comments you wish to address before participation: 	. Our Laboratory is interested to participate in this method validation study (cellaborative trial). YES NO Signature;
Please read carefully the following before signing Retieseweg 111, 5-240 Ged -Beylum, Telephone (32-41, 571 211, http://mm.jtc.ac.europa.eu Telephone.directine (32-41, 571 313 Fac. (32-44, 5720 16).		3
E-mail: jro-imm-ori-mycotox@ec.europa.eu	2	

7.4 Annex 4 – Instructions to the participants

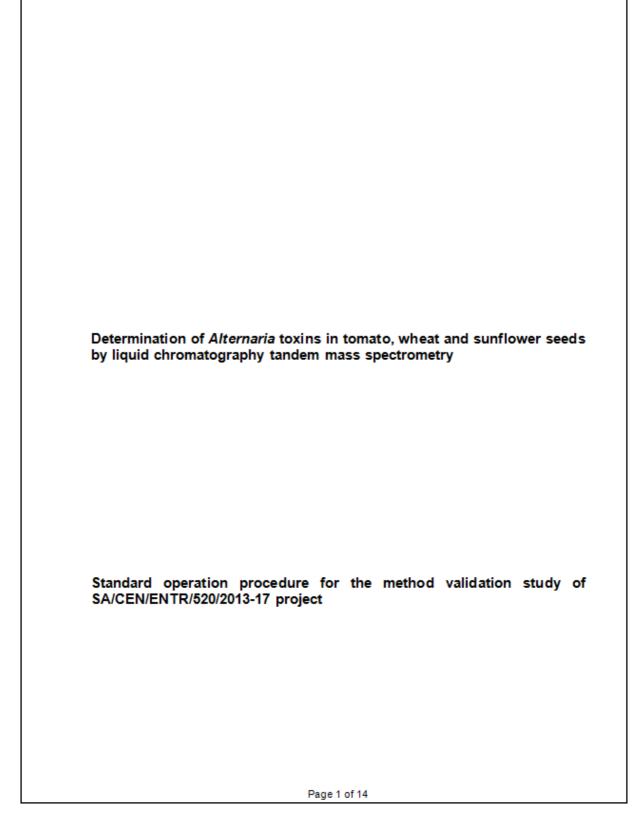

٦Г

	7. Reporting the results:	- The third tab contains a general questionnaire:	
EUROPEAN COMMISSION JONTESE ARCHECHTRE Latitus for edience manylak and massressments	The data generated by the participants will be collected by using <u>RingDat</u> software, supplementary to ProLab software.	C) Important made Stapper, Stability in Landmark Tamping Stapper, Samoura (2017) Substances (2017)	54
常会常 EU reference laboratory for mycotoxins European Union Reference Laboratory	You will receive by mail two files for reporting results, please follow these instructions:		
Mycotoxins	r ou will receive by man two mes for reporting results, prease follow mese instructions.	Lab Mateh Magazand ustan Damining and Assessment	
	a. Download a simple data entry program RingDat from the QuoData web page using the	1 No. Search (Vinter M (or weight The search))	1
	following link: http://quodata.de/ringdat en.php You do not have to register there, just use	2 Harmony years of expressive data the helphal conductor broket/have with LCME project of economics?	
	the username and password provided:	2 For these large planes is used bits have an approved that the Alexandra trans top (C. 4017) 4 As your following a summitted for the analysis of Alexandra trans is found by (C.4017)	043
	the definance and password provided.		4294 444
Dear Participant,	Usemame: ringdat		TA Ree
	Password: prolabdata	XVVE, passe with to shall had name (named) a post discourse associated XVIII ways segme here you've and the angles to discourse holes in had per year?	
	1 assword. production	7 Daty on bit of the estimation distribution for the VML adequate' 8.5100 which pairs in our date counting segment?	0.00
	Save the file on your computer.		
On behalf of the EU-RL for Mycotoxins, I announce the opening of the inter-laboratory	save me me on your compiler.	Shafe do you fani also fan españoj to Poj de Bagdart 10 Del ao hann any antilens e complex patient?	C 84
validation of the method for the determination of Alternaria toxins in wheat, tomato juice	h. Ta da suma falles adam sum hans sum des Diss Da file sum de ten laborarifs files	11, 21 (2), while have all produces 1	CNR
	b. To the same folder where you have saved the RingDat file, save the two lab specific files	12 Are offer commits pro well to address?	
and sunflower seeds.	with the extension "*.LAB" and "*.LA2", that were generated by the ProLab software and	1), Coll you lind that Martinol decognition (SCP), addequare?	2.10 2.10
	provided to each laboratory individually (personal files) with this mail.	14 TWC, a view particle could be represed?	
I thank you for joining the study and ask you, in order to obtain consistent results, to		Winterground in the little for reduction of default 7	28
please follow all instructions included in the documents you received.	c. Start the RingDat.exe program and open the "*.LAB" file for reporting the results. A	10.1102 which party required devotes from protocol? Please exclude partyriph nuclear and devotes the devotes against	0.10
	table will appear with cells for every measurand sample combination	17 follows excession are problems during the products?	C No.
In particular, you should note the following:	- The "*.LA2" file contains information about the participant - laboratory name and	10.11 VEC, what were the specific patience protect which complex doll free apply?	0.14
	laboratory code; - The "*LAB" file is unique to each laboratory (personal) and contains information about		
 out and e-mail the enclosed receipt form). Please store goods at appropriate conditions (-18 °C for standard solutions and test materials, room temperature for dimethyl sulfoxide (DMSO) and consumables) until the analysis. Let materials reachambient temperature before use. Your participation code will be randomly generated by <u>ProLab</u> software and sent by email. 	the samples and measurands that have to be madyized and reported. - The first the occutains general information about the blockratary: - The second tab contains a table for entering the results. You can sort the entries by sample or by measurand: - Control of the second Gongoth's UNAtional Found Visional Town Visional	d. Fill in the result table with your data. DO NOT CY RECOVERY. Please report only ONE final value per most e. Afterwards, please fill in the questionnaire on the next f. After finishing the input, save the file using the buttor You can still change the inputs after saving the file as "Finish input" button. At the end finalise the data ent	asurand per sample in μg/kg. ab. 1 on the top menu of the window long as you have not pushed th
4. Read all accompanying documents before starting the analysis. <u>THE METHOD</u> <u>PROTOCOL MUST BE FOLLOWED</u> . In particular the following points	Ring test: Alternaria CEN MVS	button. g. Send both the "*.LAB" and "*.LA" files back to us by	
 Read all accompanying documents before starting the analysis. <u>THE METHOD</u> <u>PROTOCOL MUST BE FOLLOWED</u>. In particular the following points should be remarked: -Analyse only one matrix per day and apply matrix-matched calibration outlined in the method protocol. The amount of sample to be extracted (2.00 g) should not deviate from the one indicated in the method protocol. This is of crucial importance due to the 	Ring test: Alternaria CEN MVS I Garade Manazard SAMPLE B Manazard SAMPLE C Manazard	button. g. Send both the "**LAB" and "*LA" files back to us by - <u>IRC-IRMM-FURL-MYCOTOX@eccuropa.eu</u> h. If you want to correct some of your entries after overwrite the *LA2 file with original one downloaded to modify the data but you will have to fill the questionn finish input, again.	y e-mail on our functional mail bo r finishing the input, you sha from the mail. This will allow yo aire out, again. Then, you need t
 Read all accompanying documents before starting the analysis. <u>THE METHOD</u> <u>PROTOCOL</u>, MUST <u>BE FOLLOWED</u>. In particular the following points should be remarked: -Analyse only one matrix per day and apply matrix-matched calibration outlined in the method protocol. -The amount of sample to be extracted (2.00 g) should not deviate from the one indicated in the method protocol. This is of crucial importance due to the material homogeneity requirements. -All samples should be homogenised before taking the test portion for 	Ring test: Alternaria CEN MVS	 button. g. Send both the "**LAB" and "**LA" files back to us by - <u>IRC-IRAM-EURL-MYCOTOX/gec-urupsa.eu</u> h. If you want to correct some of your entries after overwrite the *_LA2 file with orginal one downloaded to modify the data but you will have to fill the questionn finish input, again. 8. Please also send back the chromatogram of the dimatrix. They can be sent back by e-mail (<u>irc-immun</u>) 	y e-mail on our functional mail bo r finishing the input, you sha from the mail this will allow yo aire out, again. Then, you need t hird calibration level for eac -eurl-mycotox@ec europa eu
 Read all accompanying documents before starting the analysis. <u>THE METHOD</u> <u>PROTOCOL MUST BE FOLLOWED</u>. In particular the following points should be remarked: Analyse only one matrix per day and apply matrix-matched calibration outlined in the method protocol. The amount of sample to be extracted (2.00 g) should not deviate from the one indicated in the method protocol. This is of crucial importance due to the material homogeneity requirements. All samples should be homogenised before taking the test portion for performing the analysis. Make sure that all required instruments and consumables are at hand before 	Ring test: Alternaria CEN MVS	 button. g. Send both the "*LAB" and "*LA" files back to us by - <u>RC-IRNM-EURL-MICOTOX@sc.uropa.eu</u> h. If you want to correct some of your entries after overwrite the *LA2 file with original one downloaded to modify the data but you will have to fill the questionn finish nput, again. 8. Please also send back the chromatogram of the di 	y e-mail on our functional mail bo r finishing the input, you sha from the mail. This will allow yo aire out, again. Then, you need 1 hird calibration level for eac- leuil-mycotox@ec auropa eu hich gives a time period of si
 Read all accompanying documents before starting the analysis. <u>THE METHOD</u> <u>PROTOCOL MUST BE FOLLOWED</u>. In particular the following points should be remarked: Analyse only one matrix per day and apply matrix-matched calibration outlined in the method protocol. The amount of sample to be extracted (2.00 g) should not deviate from the one indicated in the method protocol. This is of crucial importance due to the material homogeneity requirements. All samples should be homogenised before taking the test portion for performing the analysis. Make sure that all required instruments and consumables are at hand before starting the analysis. 	Ring tost: Alternaria CEN MVS	 button. g. Send both the "*LAB" and "*LA" files back to us by - <i>IRC-IRNM-EURL-MICOTOX @cc-uropa-eu</i> h. If you want to correct some of your entries after overwrite the *LA2 file with original one downloaded to modify the data but you will have to fill the questionn finish input, again. 8. Please also send back the chromatogram of the di matrix. They can be sent back by s-mail (inc-immun) The deadline for this collaborative trial is 24/11/2015 w weeks for all experiments. We are looking forward to hea 	y e-mail on our functional mail bo r finishing the input, you shi from the mail. This will allow yy aire out, again. Then, you need hird calibration level for each e-sul-mycotox@cc.europa.ex hich gives a time period of si
 Read all accompanying documents before starting the analysis. <u>THE METHOD PROTOCOL MUST BE FOLLOWED</u>. In particular the following points should be remarked: Analyse only one matrix per day and apply matrix-matched calibration outlined in the method protocol. The amount of sample to be extracted (2.00 g) should not deviate from the one indicated in the method protocol. This is of crucial importance due to the material homogeneity requirements. All samples should be homogenised before taking the test portion for performing the analysis. Make sure that all required instruments and consumables are at hand before 	Bill State Managed Ust * State Managed Ust * State Atmose Ust * State	 button. g. Send both the "*LAB" and "*LA" files back to us by - IRC-IRMM-EURL-MYCOTOX/gec.europa.eu h. If you want to correct some of your entries after overwrite the *LA2 file with original one downloaded to modify the data but you will have to fill the questionn finish mput, again. 8. Please also send back the chromatogram of the du matux. They can be sent back by e-mail (irc immu The deadime for this collaborative thai is 24/11/2015 x weeks for all experiments. We are looking forward to hear suits your needs for future use. A detailed outline of the study is included in the MVS is spliking protocol and the method protocol (SOP); in addif further details. Anyhow we would like to encourage you uf uther clasification, at the following address: jre-immu- 	y e-mail on our functional mail bo r finishing the input, you sha from the mail. This will allow you aire out, again. Then, you need the hird calibration level for each eurl-mycotox@ec europa eu- hich gives a time period of si r from you andhope the metho ample parcel together with thion, in this document you fin to contact us, in case you see
 Read all accompanying documents before starting the analysis. <u>THE METHOD PROTOCOL MUST BE FOLLOWED</u>. In particular the following points should be remarked: Analyse only one matrix per day and apply matrix-matched calibration outlined in the method protocol. The amount of sample to be extracted (2.00 g) should not deviate from the one indicated in the method protocol. This is of crucial importance due to the material homogeneity requirements. All samples should be homogenised before taking the test portion for performing the analysis. Make sure that all required instruments and consumables are at hand before starting the analysis. Makyse each sample only once. In case you encounter any problem during the 	Bismage Meanzand Unit Videe BisMartin Alexander 1050 Staffel	 button. g. Send both the "* LAB" and "* LA" files back to us by - <u>IRC-IRAM-EURL-MYCOTOX/gec-europa.eu</u> h. If you want to correct some of your entries after overwrite the * <u>LA3</u> file with one-inginal one downloaded to modify the data but you will have to fill the questionn finish input, again. 8. Please also send back the chromatogram of the dl matrix. They can be sent back by e-mail (<u>irc-immun</u> The deadline for this collaborative trial is 24/11/2015 w weeks for all experiments. We are looking forward to heas suits your needs for future use. A detailed outline of the study is included in the MVS s spiking protocol and themethod protocol (207); in addit further details. Anyhow we would like to encourage you 	y e-mail on our functional mail bo r finishing the input, you sha from the mail. This will allow you aire out, again. Then, you need the hird calibration level for each eurl-mycotox@ec europa eu- hich gives a time period of si r from you andhope the metho ample parcel together with thion, in this document you fin to contact us, in case you see

7.5 Annex 5 – Materials receipt form

***	*				Tomato juice for SPIKI
* *	Community Reference Laboratory for Mycotoxins European Union Reference Laboratory	Date of the receipt of the test materials/consumables All items have been received undamaged	YES / NO		Tomato juice for SPIKI III-IV
	Mycotoxins	If NO, please list damaged items according to the letters associated at eachitem in the list above			Sunflower for SPIKE I- and SPIKE III-IV 1 and 2
	RECEIPT FORM	Please write one item per row		Working standard solution	A. B. C and D
Name	e of Participant	Items are missing	YES / NO	Spiking solutions	A, D, C and D
Affili: Labco		If YES, please list missing items according to the letters associated at eachitem in the list above		Dimethyl <u>sulfoxide</u> (DMSO)	
Count	try	Please write one item perrow	Sample A	SIGNATURE:	
			Sample B	Please email the completed form to:	Ádám Tölgyesi
NOT	TE: UPON RECEIPT STORE THE CONSUMABLES AND DIMETHYL SULFOXIDE AT ROOM		Sample C	EuropeanCom	mission - DG Joint Research Centre erence Materials and Measurements
т	EMPERATURE AND THE WORKING/SPIKING		Sample D		B-2440 Geel, Belgium
	TIONS AND THE MATERIALS IN A FREEZER (AT		Sample E	Email: <u>jrc-i</u>	rmm-eurl-mycotox@ec.europa.eu
	<u>-18 °C)</u>		· _		
			Sample F		
rouwi	ill receive two parcels, please fill in the material receipt form after receiving				
bothpa	arcels. Please ensure that the items listed below have been received undamaged,		Sample G		
both pa and the	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page :		Sample G Sample H		
ooth pa and the	arcels. Please ensure that the items listed below have been received undamaged,				
ooth pa and the	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page :	Serial numbers of the test samples you received	Sample H		
ooth pa and the Conten	arcela. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method	Serial numbers of the test samples you received	Sample H Sample I Sample J		
othpa nd the Conten a) b) c)	arcela. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method The critical steps (operation manual)	Serial numbers of the test samples you received	Sample H Sample I Sample J Sample K		
othpa nd the Conten a) b) c) d)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : ats of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol	Serial numbers of the test samples you received	Sample H		
oth pa nd the conten a) b) c) d)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : ats of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three test materials identified for blank (one blank/matrix for matrix-	Serial numbers of the test samples you received	Sample H		
oth pa nd the onten a) b) c) d) e)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three test materials identified for blank (one blank matrix for matrix- matched calibration)	Serial numbers of the test samples you received	Sample H		
oth pa nd the Conten a) b) c) d) e) f)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three test materials identified for blank (one blank/matrix for matrix- matched calibration) Eighteen coded test materials for direct analysis (six sample/matrix)	Serial numbers of the test samples you received	Sample H		
oth pa nd the onten a) b) c) d) e) f)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three oper materials identified for blank (one blank/matrix for matrix- matched calibration) Eighteen coded test materials for direct analysis (six sample/matrix) Five test materials identified for spiking (2-2 samples for cereals and tomato	Serial numbers of the test samples you received	Sample H		
bth pad the onten a) b) b) c) d) e) f) g)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three test materials identified for blank (one blank/matrix for matrix- matched calibration) Eighteen coded test materials for direct analysis (six sample/matrix)	Serial numbers of the test samples you received	Sample H Sample I Sample J Sample K Sample L Sample M Sample P Sample Q		
othpa nd the Conten a) b) c) d) e) f) g)	arcels. Please ensure that the items listed below have been received undarnaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three test materials identified for blank (one blank/matrix for matrix- matched calibration) Eighteen coded test materials for direct analysis (six sample/matrix) Five test materials identified for spiking (2-2 samples for cereals and tomato juice and 1 sample for sunflower)	Serial numbers of the test samples you received	Sample H Sample J Sample K Sample K Sample M Sample P Sample Q Sample R		
othpa nd the Conten a) b) c) d) e) f) g)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : ats of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three test materials identified for blank (one blank/matrix for matrix- matched calibration) Eighteen coded test materials for direct analysis (six sample/matrix) Five test materials identified for spiking (2-2 samples for cereals and tomato juice and 1 sample for sunflower) Two working standard solutions (1 and 2) for calibration	Serial numbers of the test samples you received	Sample H Sample I Sample J Sample K Sample L Sample M Sample P Sample Q Sample R Sample T		
both pa and the Conten a)	arcels. Please ensure that the items listed below have been received undamaged, en check the relevant statement in the table at next page : nts of parcels A copy of the instructions The SOP of the method The critical steps (operation manual) The spiking protocol Three test materials identified for blank (one blank/matrix for matrix- matched calibration) Eighteen coded test materials for direct analysis (aix sample/matrix) Five test materials identified for spiking (2-2 samples for cereals and tomato juice and 1 sample for sunflower) Two working standard solutions (1 and 2) for calibration Four spiking solutions (A, B, C and D)	Serial numbers of the test samples you received	Sample H Sample J Sample K Sample K Sample M Sample P Sample Q Sample R		

7.6 Annex 6 – Spiking protocol


7.7 Annex 7 – Results form

Open Sav	e data 🛛 🗡 Finish inpu	t 📃	Protoc
b details Measured v	alues Questions and Ansv	vers]	
o dotano (
Ring test: Alter	naria CEN MVS		
,			
		ll e e e e e e e e e e e e e e e e e e	
		- Unit - N	Value
SAMPLE_A	Altenuene	µg/kg	
SAMPLE_B	Altenuene	µg/kg	
SAMPLE_C	Altenuene	µg/kg	
SAMPLE_D	Altenuene	µg/kg	
SAMPLE_E	Altenuene	µg/kg	
SAMPLE_F	Altenuene	µg/kg	
SAMPLE_G	Altenuene	µg/kg	
SAMPLE_H	Altenuene	µg/kg	
SAMPLE_I	Altenuene	µg/kg	
SAMPLE_J	Altenuene	µg/kg	
SAMPLE_K	Altenuene	µg/kg	
SAMPLE_L	Altenuene	µg/kg	
SAMPLE_M	Altenuene	µg/kg	
SAMPLE_N	Altenuene	µg/kg	
SAMPLE_P	Altenuene	µg/kg	
SAMPLE_Q	Altenuene	µg/kg	
SAMPLE_R	Altenuene	µg/kg	
SAMPLE_T	Altenuene	µg/kg	
Spike I cereals	Altenuene	µg/kg	
Spike II cereals	Altenuene	µg/kg	
Spike III cereals	Altenuene	µg/kg	
Spike IV cereals	Altenuene	µg/kg	
Spike I tomato juice	Altenuene	µg/kg	
Spike II tomato juice	Altenuene	µg/kg	
Spike III tomato juice	Altenuene	µg/kg	
Spike IV tomato juice		µg/kg	
Spike I sunflower	Altenuene	µg/kg	
Spike II sunflower	Altenuene	µg/kg	
Spike III sunflower	Altenuene	µg/kg	
a parte in control (0)	Altenuene	µg/kg	

7.8 Annex 8 – Questionnaire

rs of experience does the method conductor (an	alyst) have with LC-MS analysis of mycotoxins?		
▼ Cue	Guestion	Answers	Edit type
	Click here to define a new question for Alternaria CEN MVS.	This trais	Lun type
: Atternaria CEN MVS (28 questions, 0 answers)			
1 Analysis	When did you analyse the samples?		Memo
2 Analyst experience	How many years of experience does the method conductor (analyst) have with LC-MS analysis of mycotoxins?		TextEdit
3 Lab experience	For how long (years) your lab has been analysing food for Alternaria toxins by LC-MS?		TextEdit
4 Accreditation	Is your laboratory accredited for the analysis of Alternaria toxins in food by LC-MS?		CheckGroup
5 What matrices	If YES, please write for which food matrix (matrices) is your laboratory accredited		TextEdit
6 Samples per year	How many samples does your lab analyse for Alternaria toxins in food per year?		SpinEdit
7 Instructions	Did you find the instructions distributed for this MVS adequate?		RadioGroup
8 If NO, improvments	If NO, which parts do you think could be inproved?		Merno
9 ProLab/RingDat interface	What do you think about the reporting by ProLab/RingDat?		TextEdit
10 Problems?	Did you have any problems in using this platform?		RadioGroup
11 If YES, what kind of problems?	If YES, what kind of problems?		Memo
12 Any other comments	Any other comments you wish to address?		TextEdit
13 Method description	Did you find the Method description (SOP) adequate?		RadioGroup
14 If NO, improvements	If NO, in which part(s) it could be improved?		Memo
15 Able to follow the method	Were you able to follow the method in all details?		RadioGroup
16 If NO, deviations	If NO, which parts required deviation from protocol? Please include paragraph number and describe the deviation applied.		Merno
17 Problems during analysis	Did you encounter any problems during the analysis?		RadioGroup
18 If YES, what/were	If YES, what were the specific problems and to which samples did they apply?		Merno
19 Analytical process splitted?	Was the analytical process split over staff (e.g. Extraction was done by Person#1, instrumental analysis by Person#2)?		RadioGroup
20 Abnormalities noticed	Did you notice any abnormality, that however seem to have no effect on the result?		RadioGroup
21 If YES, please describe	If YES, please describe and report for which samples (codes) they occured		Merno
22 Familiar with steps	Were you familiar by practice with all the steps performed during the analysis?		RadioGroup
23 If NO, please describe	If NO, please describe and report for which steps (Please refer to the respective paragraph number in the SOP)		Merno
24 Any other information	Any other information that you would like to add?		Memo
25 Overnight stops	Did you need to include any "overnight" stops in the analysis of the MVS samples without performing new calibration when resuming the sequence?		RadioGroup
26 If YES, for which samples	If YES, please state for which samples and at what stage of the analysis?		Memo
27 Signal integration mode	How did you intergate the signals?		RadioGroup
28 Re-integration	If you integrated automatically, for how many chromatograms was it necessary to re-intergare analyte peaks? (If none, put 0)		SpinEdit

Contents

Page

1	Scope
2	Normative reference4
3	Principle4
4	Reagents4
5	Apparatus
6	Procedure
7	LC-MS/MS analysis9
8	Preparation of spiked samples12
9	Calculation12
Annex	A (informative) Typical chromatogram14

Page 2 of 14

Foreword

THIS IS A STUDY FOR THE EVALUATION OF <u>THE METHOD</u>, NOT FOR ASSESSING THE PERFORMANCE OF THE LABORATORY. THEREFORE THE METHOD MUST BE <u>FOLLOWED AS GIVEN IN THE SOP</u>. ANY DEVIATIONS FROM THE METHOD AS DESCRIBED, NO MATTER HOW TRIVIAL THEY MAY SEEM, MUST BE NOTED ON THE REPORT FORM.

WARNING — the use of this protocol involves hazardous materials, operations and equipment. This protocol does not purport to address all the safety problems associated with its use. It is the responsibility of the user of this protocol to establish appropriate safety and health practices and determine the compatibility with regulatory limitations prior to use.

Page 3 of 14

1 Scope

This protocol specifies a method for the determination of five *Alternaria* toxins in wheat, tomato juice and sunflower seed samples by liquid chromatography tandem mass spectrometry (LC-MS/MS). The method includes the analysis of Altenuene (ALT), Alternariol (AOH), Alternariol monomethyl ether (AME) in the range of $1 - 100 \mu g/kg$, and Tentoxin (TEN) in the range of $5 - 500 \mu g/kg$, and Tenuazonic acid (TEA) in the range of $10 - 1000 \mu g/kg$.

2 Normative reference

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN ISO 3696, Water for analytical laboratory use - Specification and test methods (ISO 3696:1987).

ISO 1042/1998, Laboratory glassware - One-mark volumetric flasks.

Commission regulation (EC) No 401/2006, of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs (Text with EEA relevance).

3 Principle

A test portion is extracted with methanol – water – acetic acid mixture. The sample is centrifuged and an aliquot of the upper layer is collected. Then, the extract is diluted with an equal volume of 1% aqueous acetic acid solution, and purified on a polymeric based solid-phase extraction (SPE) cartridge. The purified sample is eluted with methanol from the SPE column and the resulting eluate is evaporated, reconstituted and filtered through PTFE syringe filter prior analysed by LC-MS/MS.

4 Reagents

Use only reagents of recognized analytical grade and water complying with grade 1 of EN ISO 3696, unless otherwise specified. Solvents shall be of quality for LC-MS analysis, unless otherwise specified. Commercially available solutions with equivalent properties to those listed may be used.

4.1 Nitrogen purified compressed gas (purity equivalent to 99.99% or better)

- 4.2 MILLI-Q water, HPLC grade
- 4.3 CHROMA SOLV® Water, LC-MS grade
- 4.4 Methanol, LC-MS grade
- 4.5 Dimethyl sulfoxide HPLC grade
- 4.6 n-Hexane, HPLC grade
- 4.7 25% ammonium hydroxide, LC-MS grade
- 4.8 Acetic acid, ACS reagent, ≥99.7%
- 4.9 Ammonium acetate, (CH₃COONH₄), LC-MS grade
- 4.10 1 M ammonium acetate solution
- Dissolve 77.08 g ammonium acetate (4.9) in 1 L water (4.2).

Page 4 of 14

4.11 Extraction solvent

Methanol-water-acetic acid (80/19/1, v/v/v) mixture.

Mix 800 mL methanol (4.4) with 190 mL water (4.2) and with 10 mL acetic acid (4.8).

4.12 1% (v/v) acetic acid in water

Mix 990 mL water (4.2) with 10 mL acetic acid (4.8) and homogenise it.

4.13 HPLC mobile phase A

5 mM ammonium acetate buffer at pH ~8.7.

Mix 5 mL 1 M ammonium acetate solution (4.10) and 110 μ L 25% ammonium hydroxide (4.7) with 900 mL LC-MS grade water (4.3). Adjust the volume with LC-MS grade water (4.3) to 1 L and homogenise it.

Note: Check the pH of eluent with pH meter or pH stick (5.1), pH shall be between 8.6 and 8.7.

4.14 HPLC mobile phase B

100% methanol (4.4).

4.15 Standards as powder or dried film

Altenuene (ALT), 1 mg at least 98%,

Alternariol (AOH), 5 mg at least 96%

Alternariol monomethyl ether (AME), 5 mg at least 98%

Tentoxin (TEN), 1 mg at least 99%

Tenuazonicacid (TEA), 100.0 µg at least 99%

WARNING – Protective clothing, gloves and safety glasses should be wom at all times, and all standard and sample preparation stages should be carried out in a fume cupboard.

4.16 Working standard solution 1

A methanolic standard mixture that contains ALT, AOH, AME in 100 ng/mL concentration and TEN in 500 ng/mL concentration and TEA in 1000 ng/mL concentration.

4.17 Working standard solution 2

A methanolic standard mixture that contains ALT, AOH, AME in 500 ng/mL concentration and TEN in 2500 ng/mL concentration and TEA in 5000 ng/mL concentration.

4.18 Spiking solution A

A methanolic standard mixture that contains ALT, AOH, AME TEN, and TEA standards.

4.19 Spiking solution B

A methanolic standard mixture that contains ALT, AOH, AME TEN, and TEA standards.

Page 5 of 14

4.20 Spiking solution C

A methanolic standard mixture that contains ALT, AOH, AME TEN, and TEA standards.

4.21 Spiking solution D

A methanolic standard mixture that contains ALT, AOH, AME TEN, and TEA standards.

Note: Store the working and spiking standard solutions in a freezer at approximately -18 °C for up to three months. Let the mixture reach room temperature and vortex-mix it before use.

5 Apparatus

General

Usual laboratory glassware (graduated cylinders, glass funnels, beakers, pipettes, screw-cap, screw-cap amber vials, etc.) and equipment and, in particular, the following:

5.1 pH stick or pH meter

5.2 50 mL polypropylene (PP) centrifuge tube with scale on it

5.3 Laboratory balance, with a mass resolution of 0,01 g

5.4 Analytical balance, with a mass resolution of 0,0001 g

5.5 Adjustable hand shaker

5.6 Centrifuge, with temperature control and at least 2773 x g speed

5.7 Calibrated volumetric pipettes

5.8 Hamilton syringe, with 5 µL, 10 µL, 100 µL, and 1000 µL capacity

5.9 Displacement pipettes, of 100 µl and 1000 µl capacity, with appropriate tips

5.10 Solid-phase extraction (SPE) cartridge with hydrophilic modified styrene polymer with 6 mL reservoir capacity, 200 mg adsorbent mass and 100 µL particle size

NOTE: Phenomenex Strata-XL, hydrophilic modified styrene polymer with 6 mL reservoir capacity, 200 mg adsorbent mass and 100 µL particle size have shown to meet this specifications.

5.11 PP reservoirs (approx. 25 mL), fit to SPE columns.

5.12 Polytetrafluoroethylene (PTFE) syringe filter, 13 mm or 15 mm and 0.2 µm.

5.13 1 mL syringe with needle

5.14 Vacuum manifold for SPE clean-up, with taps

5.15 Vortex mixer

5.16 Sample concentrator, with temperature control and gas supply

5.17 Glass receiving tubes for sample elution/evaporation

5.18 Glass vials, ~ 1.5 ml capacity with insert and crimp caps or equivalent

Page 6 of 14

5.19 250 mL beaker

5.20 10 mL, 25 mL and 50 mL volumetric flasks

5.21 LC-MS/MS apparatus, comprising the following:

5.21.1 Mobile phase pump, gradient, capable of maintaining a volume flow rate of 0.3 mL/min pulse free

5.21.2 Degasser, optional, for degassing HPLC mobile phases

5.21.3 Injector system, capable of injecting e.g. 10 µL

5.21.4 Column oven, capable to operate at 30 °C ± 1 °C

5.21.5 Triple quadrupole detector equipped with electrospray interface

5.21.6 Recorder, integrator or computer based data processing system

5.22 HPLC reversed phase column

NOTE: Supelco Ascentis Express C-18 with column dimension of 100 mm x 2.1 mm and 2.7 µm particle size has shown to give acceptable results.

5.23 Pre-column, with the same stationary phase material as the analytical column (5.22).

6 Procedure

Analyse only one matrix (e.g. cereal) per day. Weigh 2.00 g of test portion in a 50 mL centrifuge tube (5.2) for single analysis.

In the case of **tomato juices**, one day before analysis, take the test, spike and blank samples into the fridge and allow them to melt completely at around +4 °C overnight (~16 h). After the complete melting of the samples homogenize them by hand shaking or vortex-mixing for 1 min. Take the remaining samples back to the freezer at -18 °C and used them later if the analysis has to be repeated.

In the case of **sunflower** agglomerates can appear in the containers due to the fatty material. Therefore, it is very important to homogenise the samples in the containers before weighing them in.

6.1 Extraction

Weigh 2.00 g of test portion in a 50 mL centrifuge tube (5.2).

Add **15** mL of extraction solvent (4.11) and cap the tube. Vortex-mix it for 10 s to obtain a homogeneous suspension and then shake it for 45 min at room temperature at 600 1/min speed using a hand shaker (5.5).

Note: Small part of the sunflower samples may stick to the wall of the tube during extraction. Therefore, every 10 min the tube shall be taken out from the shaker and the tube shall be shaken by hand for 2 s to remove the material from the wall of the tube. Afterwards, the tube can be taken back into the shaker.

Then, centrifuge the sample at approximately 22 °C for 10 min at 2773 x g (4000 rpm) speed and transfer an aliquot of upper layer (equal to **1.0** g sample, see below) into a new 50 mL centrifuge tube (5.2).

In the case of cereals and sunflower seeds 7.5 mL upper layer (equal to 1.0 g sample) has to be collected in a new 50 mL tube.

Page 7 of 14

For tomato juice 8.0 mL of upper layer (equal to 1.0 g sample) has to be transferred into a new 50 mL tube.

6.2 Dilution

Dilute the collected upper layer in the tube with equal volume of 1% (v/v) aqueous acetic acid solution (4.12). Then, homogenize the sample by vortex-mixing for 5 s.

7.5 mL of upper layer is diluted with 7.5 mL 1% aqueous acetic acid for cereals and sunflower seeds in the tube.

8.0 mL of upper layer is diluted with 8.0 mL 1% aqueous acetic acid for tomato juice in the tube.

6.3 SPE clean-up

Connect the SPE cartridge (5.10) to the vacuum manifold (5.14). Condition the cartridge with 7 mL methanol (4.4), followed by 7 mL water (4.2) and 3 mL 1% (v/v) acetic acid solution (4.12).

After the 3 mL 1% (v/v) acetic acid solution (4.12) passed through, close the tap under the cartridge and pipette 3 mL 1% (v/v) acetic acid solution (4.12) into the SPE column, again. Then, attach a reservoir (5.11) onto the SPE column.

Load the diluted sample (6.2) into the reservoir and open the tap. Wash the 50 mL PP tube, which contained the diluted sample (6.2), with 3 mL 1% (v/v) acetic acid solution (4.12) and load it into the reservoir. Pass the sample through slowly (approximately 1 drop/s). Then, remove the reservoir and wash the cartridge with 7 mL 1% (v/v) aqueous acetic acid solution (4.12). Dry the cartridge with vacuum for half min before washing it with 7 mL n-hexane (4.6). Then, dry the cartridge with vacuum for 1 min before sample elution.

6.4 Sample elution

Pipette 100 μ L dimethyl sulfoxide (4.5) into a glass receiving tube (5.17), and take the tube into the vacuum manifold for sample elution. Elute the sample with 6 mL methanol (4.4) into the glass receiving tube that contains 100 μ L dimethyl sulfoxide (4.5). After the methanol passed through, dry the cartridge for 10 s with vacuum.

NOTE: if the n-hexane and the methanol used for washing and elution, respectively, do not want to start dropping, a gentle vacuum can be applied in order to start the elution. After the first drop passed through the cartridge, the vacuum is not needed.

6.5 Sample evaporation

Evaporate the methanolic eluate (6.4) in the glass receiving tubes (5.17) to 100 µL at 50 °C using the sample concentrator (5.16) and a gentle stream of nitrogen (4.1).

NOTE: The dimethyl sulfoxide will not evaporate, therefore it prevents the complete evaporation of solvent. If the solvent volume does not change, it means that only dimethyl sulfoxide (approx. 100 μ L) remains in the tube and the evaporation step is complete.

6.6 Sample reconstitution

Vortex-mix the evaporated sample (approx. 100 μ L) for at least 15 s to re-dissolve the purified sample residues. Afterwards, adjust the volume of sample to 1.0 mL with water (4.2) and vortex-mix it for at least 30 s. Filter the sample through PTFE syringe filter (5.12) and transfer the sample into HPLC vial containing insert (5.18).

Note: As syringe filters will adsorb approximately 500 µL sample, it is recommended to take an insert into the vial to allow sufficient solvent levels in the vial.

Page 8 of 14

7 LC-MS/MS analysis

7.1 LC-MS/MS operating conditions

When the column specified in 5.22 and the mobile phases A and B specified in 4.13 and 4.14 were used, the followings ettings were found to be appropriate:

Time	Mobile Phase A	Mobile Phase B
(min)	(%)	(%)
0.00	90	10
1.00	90	10
10.00	0	100
18.00	0	100
18.50	90	10
23.00	90	10

Flow rate: 0.3 mL/min.

Column oven temperature (including the guard column): 30 °C;

Autosamplertemperature: 25 °C;

Injection volume: 10 µL;

Analysistime: 23 min;

Ion source: electrospray;

Ionization mode: negative.

Ion source temperatures (i.e. vaporizer, drying gas), gas flows, and voltages (i.e. capillary) depend on the instruments used for analysis and shall be optimized for every laboratory. Optimized ion source settings for Ultima PT and Thermo TSQ Quantum Ultra systems are the following:

Ultima PT: source temperature 125 °C, desolvation temperature 370 °C, drying gas flow 902 L/Hr, cone gas flow 76 L/Hr, and capillary voltage -2.8 kV.

TSQ Quantum Ultra: sheath gas pressure 30 arbitrary unit (Arb), ion sweep gas pressure 10 Arb, aux gas pressure 5 Arb, vaporizer and capillary temperatures 325 °C, capillary voltage -3.0 kV.

Alternaria toxins can be ionized in negative mode resulting in [M-H] precursor ions. Typical ion transitions are reported in **Table 2**. The corresponding voltages (i.e. cone, tube lens, collision energy), dwell times and segment times depend on the instruments used for analysis and shall be optimized for every laboratory. Optimized settings for Ultima PT and Thermo TSQ Quantum Ultra systems are the following (quantifier ion transition is highlighted with bold):

Page 9 of 14

Compounds	Detector time segment (min)	Precursor ion [M-H] ⁻ (m/z)	Product ions (m/z)	Cone/ tube lens voltage (V)	Collision energies (eV)	Dwell time (s)
		Ultim	na PT			
TEA	2-7.5	196.1	139.0 111.9	70	15 20	0.250 0.250
AOH	7.5-9.3	257.1	215.0 146.7	50	20 20	0.170 0.170
ALT	7.5-9.3	291.2	248.1 202.9	50	20 30	0.170 0.170
TEN	9.3-10.3	413.5	271.2 214.8	50	15 15	0.250 0.250
AME	10.3-11.3	271.1	256.2 228.2	50	20 20	0.250 0.250
		Therm	o TSQ			
TEA	0-4	196.1	139.1 112.2	80	20 15	0.200 0.200
AOH	4-7	257.0	215.2 147.0	120	25 30	0.150 0.150
ALT	4-7	291.2	248.1 203.2	130	25 30	0.150 0.150
TEN	7-8	413.3	271.2 215.1	120	15 20	0.200 0.200
AME	8-20	271.0	256.2 228.2	100	25 30	0.200 0.200

Table 2: Ion transitions set on Ultima PT and TSQ Quantum Ultra instruments

7.2 Preparation of blank and matrix-matched calibration solutions for LC-MS/MS analysis

Prepare one blank and five matrix-matched calibration solutions:

Weigh **2.00** g of **blank** sample in 50 mL centrifuge tubes six times. Extract (6.1), dilute (6.2), and cleanup (6.3) the samples. Before sample elution (6.4) pipette **different volumes of working standard solutions** (4.16 and 4.17) into five glass receiving tubes (5.17) to which the calibration samples will be eluted. Leave the sixth tube without fortification and use it as blank. Add also 100 µL dimethyl sulfoxide (4.5) into the tubes (5.17) and take them into the vacuum manifold for sample elution. Elute the samples (6.4).

Evaporate the eluates using the above mentioned process (6.5) and re-dissolve the samples using the procedure mentioned in section 6.6.

Fortification volumes and concentrations obtained are detailed in Table 3.

Note: The blank tomato juice sample is free of *Alternaria* toxins, but the blank cereal and sunflower samples contain a low naturally contamination. This is important for the calculation, because the peak area of toxins obtained from the chromatogram of blank sample must be deducted from the peak areas obtained from the chromatogram of matrix-matched calibration solutions.

Page 10 of 14

Table 3: Preparation of matrix-matched calibration solutions. These volumes of working standard solutions shall be pipetted into the glass receiving tubes before sample elution in order to obtain the matrix-matched calibration solutions.

			ALT	AOH	AME	TEN	TEA
Calibration samples	Working standard solution 1 (µL) (4.16)	Working standard solution 2 (µL) (4.17)	Concentration in µg/kg				
Blank	-	-					
CAL 1	10	-	1	1	1	5	10
CAL 2	50	-	5	5	5	25	50
CAL 3	100	-	10	10	10	50	100
CAL 4	-	50	25	25	25	125	250
CAL 5	-	200	100	100	100	500	1000

7.3 Calibration curve

Prepare a calibration curve by injecting the matrix-matched calibration solutions (72) at the beginning of the sequence. Plot the peak areas against the concentrations in the injected matrix-matched calibration solutions (Table 3) and check the curve for linearity.

7.4 Determination of Alternaria toxins in spiked and test samples

Inject the solvent, the blank, the matrix-matched calibration solutions, the spiked and the test solutions into the LC-MS/MS system. The injection of calibration, spiked and test sample solutions is performed with **single** injection.

Note: Before starting the sequence the instrument shall be equilibrated by injecting matrix-free solvents and matrix-free standard solutions.

The sequence shall follow the order reported below:

- Methanol (4.4)
- Blank (7.2)
- The five matrix-matched calibration solutions (7.2) from the lowest to the highest level with single injection.
- Methanol (4.4)
- Test solutions from spiking experiments (Spike I, II, III, and IV according to the spiking protocol) with single injection.
- Methanol (4.4)
- Test solutions from samples with single injection.

Page 11 of 14

7.5 Peak identification

Identify the Alternaria toxins of the test solutions by comparing the retention time of toxins obtained from the chromatogram of test solutions to the retention time obtained from the chromatogram of matrixmatched calibration solutions. Also, calculate the ion ratios of qualifier and quantifier ion transitions (relative intensity). The ion ratios obtained from test solutions should be in the permitted tolerance intervals can be calculated from the ion ratios obtained from matrix-matched calibration solutions in accordance with Table 4. Report only those compounds that meet the peak identification criteria.

Ion ratio in calibration solution	Permitted tolerance in
(relative intensity)	test solution
> 50%	± 20%
20% - 50%	± 25%
10% - 20%	± 30%
≤ 10%	± 50%

8 Preparation of spiked samples

Prepare four spiked samples for each matrix according to the spiking protocol.

9 Calculation

9.1 Preparation of the calibration graph

If no blank sample is available for matrix-matched calibration, the initial contamination of toxins of interest must be taken into account. For that the peak area of toxin obtained from the chromatogram of the unfortified sample (**blank**) must be deducted from the peak areas obtained from the chromatogram of matrix-matched calibration solutions according to **Equation 1**.

Equation 1	$A_{toxis} =$	A _{toxis calib}	- A _{toxin blank}
------------	---------------	--------------------------	----------------------------

Where:

	A _{toxin}	is the peak area of mycotoxin obtained from the chromatogram of the matrix-matched calibration solution after the correction with the peak area of mycotoxin obtained from the chromatogram of the unfortified sample;
	A _{toxin,callb}	is the peak area of mycotoxin obtained from the chromatogram of the matrix-matched calibration solution (7.2);
	A _{toxin,blank}	is the peak area of my cotoxin obtained from the chromatogram of the unfortified sample;
axis) and calcula	as (y-axis) against the concentrations in matrix-matched calibration solutions (7.2) [µg/kg] (x- te the calibration curve using linear regression. Add the calibration curve and display the $(A_{toxin} = a^*C_{toxin, calib} + b)$ and the r-squared value on chart.

Where:

- A_{toxin} is the peak area of mycotoxin obtained from the chromatogram of the matrix-matched calibration solution after the correction with the peak area of mycotoxin obtained from the chromatogram of the unfortified sample;
- a is the value of the slope of the linear function;

Page 12 of 14

 $C_{toxin, callb}$ is the concentration of mycotoxin, in microgram per kilogram, in the matrix-matched calibration solution (7.2);

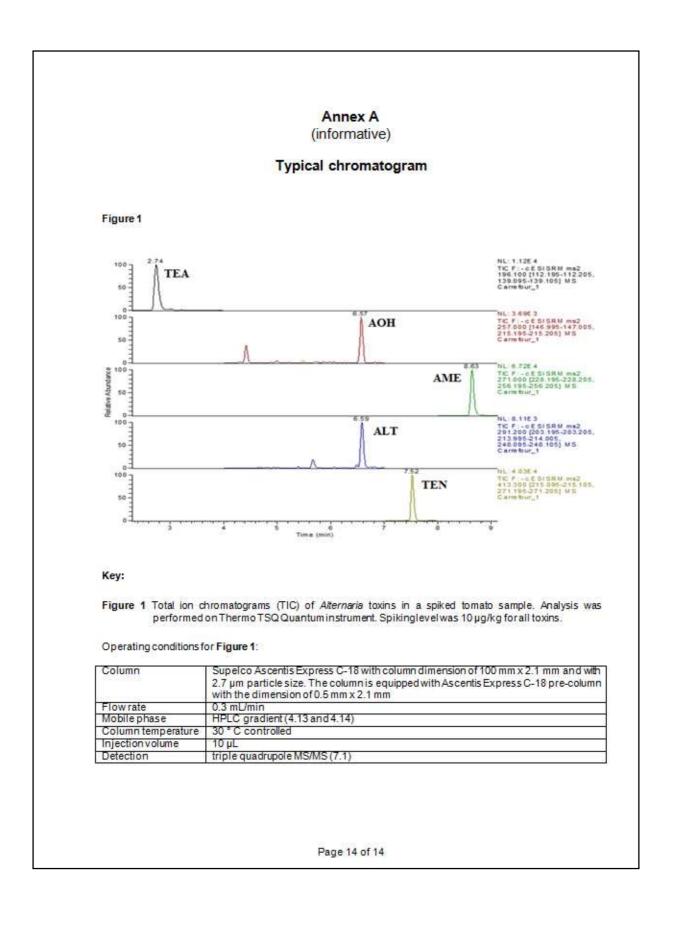
b is the value where the calibration function intercepts the y-axis.

9.2 Calculation of Alternaria toxin content in the test and spiked samples

Calculate the concentration of mycotoxins, expressed in $\mu g kg$, in the test and spiked samples using the resulting function (A_{toxin,semple} = $a^*C_{toxin,semple} + b$) and Equation 2.

Equation 2
$$C_{ioxis, sample} = \frac{A_{ioxis, sample} - b}{\alpha}$$

Where:


C_{toxin,semple} is the concentration of mycotoxin, in microgram per kilogram, in the test or spiked sample;

A_{toxin,sample} is the peak area of mycotoxin obtained from the chromatogram of the test solution;

- a is the value of the slope of the linear function (9.1);
- b is the value where the calibration function intercepts the y-axis (9.1).

If the peak areas obtained from the chromatogram of the test or spiked samples are between the first and third calibration levels, the fourth and fifth calibration levels have to be excluded from the calibration.

Page 13 of 14

7.10 Annex 10 – Critical steps

Critical steps in the Alternaria method.

"Method validation study on the determination of *Alternaria* toxins in wheat, tomato juice and sunflower seeds by solid phase extraction clean-up and liquid chromatography with tandem mass spectrometric detection"

Sample preparation

- Weigh 2.00 g of test portion in a 50 mL polypropylene centrifuge tube for single analysis. All samples should be homogenised (mainly for sunflower) before taking the test portion for performing the analysis.
- Add 15 mL extraction solvent (80 parts per volume of methanol and 19 parts per volume of water and 1
 parts per volume of acetic acid) (4.11).
- Vortex-mix it, then shake it for 45 minutes. Small part of the sunflower samples may stick to the wall of the tube during extraction. Therefore, every 10 min the tube shall be taken out from the shaker and the tube shall be shaken by hand for 2 s to remove the material from the wall of the tube. Afterwards, the tube can be taken back into the shaker.
- Centrifuge the sample.
- Sample dilution and solid phase extraction dean-up: 7.5 mL upper layer (equal to 1.0 g sample) + 7.5 mL 1% aqueous acetic acid for cereals and sunflower seeds; 8.0 mL upper layer (equal to 1.0 g sample) + 8.0 mL 1% aqueous acetic acid for tomato juice.
- Condition the cartridges: 7 mL methanol, 7 mL water and 3 mL 1% aqueous acetic acid.
- Close the tap and load 3 mL 1% aqueous acetic acid into the cartridge and attach the reservoir.
- Load the diluted sample into the reservoir and open the tap.
- Wash the 50 mL PP tube, which contained the diluted sample, with 3 mL 1% (v/v) acetic acid solution and load it into the reservoir
- Wash the cartridge with 7 mL 1% aqueous acetic acid, followed by 7 mL n-hexane.
- Dry the SPE column with vacuum for 1 min.
- Pipette 100 µL dimethyl sulfoxide (DMSO) into the glass tube to be used for sample elution.
- Elute the sample with 6 mL methanol into glass tube containing 100 µL DMSO.
- Evaporate the sample at 50 °C under nitrogen stream to approximately 100 µL (till the solvent volume does not change).
- Vortex-mix the sample for 15 s and pipette approximately 900 µL water into the tube to obtain 1.0 mL of sample volume and vortex-mix it again for 15 s.
- Filter the sample through PVDF syringe filter and transfer it into HPLC vial that contains insert. The provided Phenex syringe filter will adsorb approximately 500 µL sample, therefore it is useful to take an insert into the vial and load it with 6-8 drops of filtrate.

LC-MS/MS conditions

- Mobile phase A: 5 mM ammonium acetate in water, pH adjusted to 8.7 with 25% ammonia (110 µL 25% ammonium hydroxide to 1000 mL water containing 5 mM ammonium acetate)
- Mobile phase B: 100% methanol
- Flow rate: 0.3 mL/min
- Column: Ascentis Express C-18, 100 mm x 2.1 mm, 2.7 µm or other C-18 based column
- Column oven temperature: 30 °C
- Injection volume: 10 µl (higher volume may cause higher matrix effect)
- Autosamplertemperature: 20 °C to 25 °C

- Ion source: ESI
- Ionisation mode: negative
- MS/MS detection in MRM (SRM) mode
- [M-H]⁻ precursor ion with two ion transitions

Preparation of matrix-matched calibration solutions

- Weigh 2.00 g of blank sample in 50 mL centrifuge tubes six times (6 tubes).
- Extract and clean them up.
- During the SPE purification step, before eluting the samples, add different volume of working standard solutions according to the table below into those glass receiving tubes to which the calibration samples will be eluted.
- Do not forget to add 100 µL DMSO into the glass tubes as well.
- Elute, evaporate and reconstitute the samples according to the method protocol.

			ALT	AOH	AME	TEN	TEA
Calibration samples	Working standard solution 1 (µL) (4.16)	Working standard solution 2 (µL) (4.17)		Concen	tration in µ g	g/kg	
Blank	-	-					
CAL 1	10	-	1	1	1	5	10
CAL 2	50	-	5	5	5	25	50
CAL 3	100	-	10	10	10	50	100
CAL 4	-	50	25	25	25	125	250
CAL 5	-	200	100	100	100	500	1000

Determination of Alternaria toxins in spiked and test samples

- Inject the solvent, the blank, the matrix-matched calibration solutions, the spiked and the test solutions into the LC-MS/MS system.
- Nineteen injection in total.
- The injection of calibration, spiked and test sample solutions is performed with single injection.
- Before starting the sequence the instrument shall be equilibrated by injecting matrix-free solvents and matrix-free standard solutions.
- The sequence shall follow the order reported below:
- Methanol (4.4)
- Blank (7.2)
- The five matrix-matched calibration solutions (7.2) from the lowest to the highest level with single injection.
- Methanol (4.4)
- Test solutions from spiking experiments (Spike I, II, III, and IV according to spiking protocol) with single injections.
- Methanol (4.4)
- Test solutions from samples with single injections.

Identification

- Identify the compounds on the chromatogram of test samples with their retention time and ion ratio.
- Due to the complexity of samples matrix peaks can appear close to the target compounds' retention time, therefore the identification shall be confirmed with the ion ratios according to the method protocol (Table 4 in the SOP).
- Report only those compounds that meet the peak identification criteria.

Calculation

- If the blank sample used for matrix-matched calibration contains naturally contamination of toxins of interest, the peak area of toxin obtained from the chromatogram of the blank sample must be deducted from the peak areas obtained from the chromatogram of the matrix-matched calibration solutions.
- The blank tomato juice sample is free of Alternaria toxins, but the blank cereal and sunflower samples contain a low naturally contamination.
- Plot the peak areas (y-axis) against the concentrations in matrix-matched calibration solutions (x-axis) (see the table above) [µg/kg] and calculate the calibration curve using linear regression. Add the calibration curve and display the resulting function (A = a*C+b) and the r-squared value on chart.
- The concentration of test and spiked samples can be evaluated directly using the resulting function.
- If the peak areas obtained from the chromatogram of the test or spiked samples are between the first and third calibration levels, the fourth and fifth calibration levels have to be excluded from the calibration.
- Please do not correct the results for recovery.

7.11 Annex 11 – Results of laboratories

The tables show the mean of the duplicates reported by the participants. Calculations and outlier tests were performed by ProLab software. Those results that were submitted as single concentration were considered non-compliant and were excluded manually. The results of laboratory 613 and 614 were considered non-compliant in all samples and their results were excluded manually from the evaluation. Also, the results of laboratory 603 for sunflowers were not considered. The reasons for exclusion are detailed in section 5.2 and 5.3.

ALT

Laboratory		Sample		Cereals,	Cereals,		Sample	S	Sample	S	Sample		Tomato		Tomato	Τ	Sunflower,		flower,
		E,F	s	pike I-II	spike III-IV		G, H		I, J		K, L		juice,		juice,		spike I-II	spi	ke III-IV
												1	spike I-II	spi	ke III-IV				
Unit		µg/kg		µg/kg	µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg
601	1	10.140	2	1.025	4.515		0.925		12.220	2	21.585	1	2.485		9.580		1.995		6.455
602	-	20.655	-	2.000	7.060		6.090		9.260	٢.	19.680	ſ	1.640		5.945		not tested		8.535
603		17.823	۲.,	2.539	7.988		not tested		not tested		ot tested		not tested	_	not tested		7.764 B		12.087 D
604	18	22.110	I	not tested	4.440	1	0.900	1	10.900	۳.	23.610		not tested		12.020 C		1.500	·	4.120
605	. 5	21.700	F	0.750	2.350		0.000		10.850	۳.	23.000	1	1.900	r .	6.350	5	1.650		4.700
606	17.	20.600	۳.,	0.790	not tested		7.450		14.700	۳.	34.950	. *	2.550		6.750		not tested		not tested
607		22.300	•	1.750	6.000		0.250		13.000	٢.	24.050		2.250		9.300		2.350		8.250
608		14.885	r	1.560	6.900		12.740 C		10.855	۳.	14.215) F	2.240		6.795	Π.	0.745		5.060
609	18	18.385	۳.,	1.917	5.862		6.500	7	10.935	۳.	22.980	1	1.680	r	6.110	Π.	2.040		7.030
610		17.500	۳	1.405	6.785		6.580		11.410	۳	22.350	. *	2.010		6.905		1.300		8.080
611		19.500	ſ	not tested	7.500	1	7.850	P	12.000	۲	22.500		not tested		8.750		not tested	•	8.300
612	18	31.350	r	not tested	6.250		5.900 D	r.	11.400 C	r.	17.700) 🗖	0.900 D		5.700 D		0.450	·	5.400 D
613	18	37.650 D	P	4.915 D	16.650	D	15.300 D	•	24.050 D	۳	49.200) *	2.855 D		15.500 D	۳	3.020 D		8.885 D
614	. •	18.300 D	1	not tested	15.900	D	3.145 D		3.995 D	۳.	6.870 E)	not tested		3.095 D		not tested		5.990 D
615		43.650 D	r.	6.465 D	8.070	D	9.150	×.	12.430	r.	23.365		2.595 D		9.755	۳	14.455 D	,	17.725 D
616	18	16.180	P	1.855	7.330	- 1	7.805		14.050	۳.	29.185	e.	2.570		9.680	π.	1.660	•	6.565
No. of laboratories after	- P	13		10	12		- 11		12		11		9		11	•	9		10
elimination of outliers type A except E(without laboratories that only gave states but no measured values)																			
Explanation of outlier types																			
A: Single outlier (Grubbs)																			
B: Differing laboratory mean (Grubbs)																			
C: Excessive laboratory s.d. (Cochran)																			
D: Excluded manually																			

AOH

Laboratory	Sample C,D	S	ample E,F	Cereals, spike I-II		Cereals, spike III-IV	S	Sample G, H	Sample I, J		Sample K, L	Tomato juice, spike I-II	s	Tomato juice, spike III-IV	Sa	mple M, N	Sa	mple P, Q	5	Sample R, T		nflower, spike I-II	_	unflower, pike III-IV
Unit	µg/kg		µg/kg	µg/kg		µg/kg		µg/kg	µg/kg		µg/kg	µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg
601	428.245	в	9.450	1.565		4.295	5	2.050	3.790 E	כ ר	8.880 D	1.990		5.410		33.920		68.725		69.935	5	2.040		5.975
602	107.625		12.085	1.630		4.630	Υ.	7.655	10.030		11.690	1.210		5.850		14.950		81.460	1	29.905	P	2.050		5.535
603	99.925	1	24.155 C	1 .911		6.999	n	not tested	not tested	r	not tested	not tested		not tested	•	21.370 D		37.976 D	· -	44.881 D		1.704 E)	6.811 D
604	153.955	- F.	11.120	1.305		4.465	Υ.	5.310	6.480	18	19.805	3.640	E.	7.300		26.490	1	70.655		55.970	۳.,	2.325) *	4.765
605	83.500	- F	11.850	1.350		3.800	1	5.250	11.000		21.150	2.000		8.550	•	20.200	- 🗖 1	66.050	. *	49.250	P	1.500		5.600
606	67.050		10.350	2.300		not tested	1	7.650	8.200		15.650	4.000 D		6.650	•	21.500	1	29.000		37.900		not tested		7.750
607	104.900		17.450	1.600		6.300		6.800	9.750		18.250	2.750		6.600		24.600	- 1	39.400		31.600		2.300	1	7.650
608	166.900	- F.	11.335	2.105		7.905	P.	20.177 C	18.400) (25.965 C	0.405	E.	6.845	P.	9.685		64.180		37.310	F	1.525	1	5.485
609	101.710	1	21.595	1.825		6.140		5.730	10.695		19.525	1.530	, F	6.845	r -	23.520	1	39.080		51.085		2.555	1	7.320
610	85.995	- F.	14.240	2.785		6.820	P.	5.805	9.865	- F.	18.565	2.210		7.515	۳.,	20.660	1	42.360		45.075	F	0.785	1	5.715
611	220.000	D	14.000	9.500	В	3.150 D	ľ	6.950	9.450		20.500	2.150	ľ	8.550		36.000	2	21.500	1	62.500		not tested	1	6.000
612	65.950		17.050	2.150		10.000		8.250 D	13.500)	20.050 D	3.350 D		15.250 D		19.050	1	12.600		38.400 D		1.900	1	5.500
613	194.000	D 🚪	32.500 D	5.110	D	17.250 D		15.250 D	26.800)	49.200 D	4.020 D	. *	19.500 D		14.750 D		75.200 D)	81.700 D		2.270) 🔽	6.695 D
614	not tested		21.850 D	4.140	D	18.400 D	ľ	2.905 D	3.165 [)	3.670 D	not tested		2.040 D		28.200 D	1	40.500 C)	48.450 D		1.845 E)	6.975 D
615	42.730		10.260	2.695	С	5.460		2.445	6.990		7.705	2.875 C		7.930		24.185	- 1	20.005	1	41.630	F	2.615		6.785
616	70.485	- F.	12.730	1.490		5.550	1	6.110	5.210		32.725	2.765		8.015		23.420	1	61.530	. *	49.855	P	1.320		4.610
No. of laboratories after elimination of outliers type A- except E (without laboratories that only gave states but no measured values)		F	13	• 12	F	12	F	11	F 10	•	10	, 10 10		12	F	13	F	13		12	•	10	•	13
Explanation of outlier types																								
A: Single outlier (Grubbs) B: Differing laboratory mean (Grubbs) C: Excessive laboratory s.d. (Cochran)																								
D: Excluded manually																								

AME

Laboratory		Sample	S	ample	Ce	ereals,		Cereals,	S	Sample	Sa	mple	S	Sample	То	mato		Tomato	S	ample	Sa	mple	5	Sample	Sunflo	ower,	Su	nflower,
		Ċ,D		É,F	sp	oike I-II	sp	ike III-IV		G, H		İ, J		К, L	j	uice,		juice,		M, N		P, Q		R, T	spil	ce I-II	spi	ke III-IV
							·								spil	ce I-II	spi	ike III-IV										
Unit		µg/kg		µg/kg		µg/kg	-	µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg
601	- F	8.405		33.605	7	1.350	P	3.780	P	4.585	F	6.730	P	13.850	P	2.000	F	5.395	P	7.285 B	۲ : F	26.095 B	٢	47.920 C		1.415	- E	4.700
602	- F.	14.725		40.395		1.400	۳.,	3.945	۳.,	5.385	F	7.985	۳.,	7.225	۳	0.160 D		2.340 D		0.800 D	r -	3.370	F	1.110		1.415		4.080
603	E.	5.638	1	38.007		1.184	P	4.965	n	ot tested	not	tested	n	ot tested	not	tested		not tested	P	43.185 C	۲. (61.214 C	۳.	20.838 C		9.986 B		17.021 B
604		6.235	. •	43.305		0.850	۳.,	3.215 D		4.060	P	4.415	۳.,	13.890	F	3.085	۳.,	5.400	۳.,	1.375	۳.,	5.700	•	1.800		1.340 D		2.590
605		8.150	. *	14.300 D		0.600	۳.,	2.300 D	•	5.150	•	11.400	۳.,	21.650	•	1.400		8.300		1.500		8.600	•	2.100		1.500		5.800
606		10.150	. •	19.550		2.300		not tested	•	5.350	P	4.700	۳.,	10.650	F	1.800	۳.,	3.300 D		2.500	۳.,	8.000	۳.,	1.950		0.950		3.200
607		12.850	. *	57.850	•	1.750	F	7.100	۳.,	6.450	P	7.500	•	15.750	P	1.750		4.100		2.500	•	9.800	•	1.200		2.000		7.450
608		12.230		36.870		2.095	۳.,	8.740	۳.,	35.330 C	r	36.190 C		41.720 C		7.020 B	1	8.730	Ρ.,	1.030	۳.,	2.685	۳.,	0.835		0.880		3.275
609		7.875	. *	71.185	•	1.225	۳.,	4.110	۳.,	5.275	۳	10.365	•	19.445	•	0.925	•	5.030	۳.,	1.610	P	7.270	۳.,	2.010		1.510		5.675
610	- F.	6.175	. 7	35.065		1.620	۳.,	5.805	۳.,	5.315	۳.,	9.695	۳.,	19.925	۳	2.210	۳.,	6.210	۳.,	1.075	۳.,	4.440	۳.,	1.390		1.170	1	4.515
611	- F	12.000		23.000	n	ot tested	P	3.750	P	3.400	P	5.600	۳.,	11.400	not	tested	F	3.850		1.700	۳.,	8.400	۳.,	1.850 D		0.550 D		2.450
612	- F.	6.500	. •	35.750		1.400	۳.,	4.350	۳.,	6.700 D	r -	5.750 D		12.650 D		2.500 D	1	8.150 D	1	2.200 D		6.950	•	1.950		1.300		3.350
613	E.	64.800 C) 🍢	175.000 D	r -	4.815 D	۳	18.550 D	۳.	13.100 D	۲	31.300 D	۳.	30.300 D	۳	3.160 D	r -	10.520 D	nc	ot tested	P	1.620 D	٢	1.965 D		0.050 D		2.420 D
614		not tested		18.400 D		6.595 D	7	20.700 D	•	2.495 D	•	2.490 D	•	2.085 D	not	tested		not tested	nc	ot tested	not	tested	r	not tested	not	tested		4.125 D
615		5.070		27.205		1.970	7	5.690	P	3.820	P	5.225		5.635	•	3.510		5.130		4.810 B	P	10.510	•	3.625 D		2.785	5	5.845
616	. P.	5.250	. *	33.075		1.085	۳.,	2.355	۳.,	3.785	P	2.330 D	1	16.260	۳	0.690	•	1.695	۳.,	0.905	P	5.500	۳.,	1.725		0.545 D	1	2.155
No. of laboratories after		14		13	•	13	۳.,	11	۳.,	11	۳.,	10		11	•	9	۳.,	10	•	9	۳.,	12	•	10 🍢		10	.	13

elimination of outliers type A-L except E (without laboratories that only gave states but no

measured values)

Explanation of outlier types

A: Single outlier (Grubbs)

B: Differing laboratory mean

(Grubbs)

C: Excessive laboratory s.d. (Cochran)

D: Excluded manually

TEN

Laboratory	S	Sample A,B		Sample C,D		Cereals, spike I-II	5	Cereals, spike III-IV		Sample G, H		Sample I, J		Sample K, L		Tomato juice, spike I-II	s	Tomato juice, pike III-IV		Sample M, N	Sa	mple P, Q	S	ample S R, T	Sunflowe spike I	1	Sunflower, spike III-IV
Unit		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg		µg/kg	μg/	'kg	µg/kg
601		68.795		9.650		25.375	1	92.675		152.015		205.420		337.310		46.225		200.245		78.825 D	7 1	05.625		205.700 C	48.5	70	191.170
602	۳.,	61.770		11.515		41.140	Π.	164.345		145.015		226.820		442.370	r.	41.450		177.480		27.895		41.125		9.755	43.2	05	159.635
603		77.613		16.063	1	51.196	1	179.745		not tested		not tested		not tested		not tested		not tested	•	29.113 D	1	40.968 D		7.399 D	47.5	93 D	177.024 D
604	۳.,	28.350		7.795		30.310		152.615		196.340		238.800	2	481.325	P	40.735		229.815 C	1	40.850		84.645		15.645	37.6	10	158.470
605	۳.	25.700		5.800		24.950	1	143.150		165.750	1	257.450		472.100	r.	43.900	1	189.700		23.200	۳.	47.800		9.500	42.0	00	148.400
606		49.150	C	11.950		47.500		not tested		161.000		255.500		504.500		49.450	1	186.500		33.750		64.650		4.400	41.9	00	173.500
607	۳.,	111.150	D	12.850		58.150		190.600		153.250		243.000		504.650	r.	60.450		204.000		37.800	۳.,	59.150	۳.,	8.050	61.6	00 D	212.800
608	۳.,	34.035	- 7	1.465	D	45.010	Π.	197.400		286.350 C	1	232.350		298.950 C	ľ	65.270		217.650		104.750 D	1	26.950 D		14.005	64.0	90 C	193.850
609	۳.,	83.160		11.705		48.670	. *	182.330		156.250		234.280	1	428.745		40.150		169.645		33.025	*	40.645		5.780	47.2	10	187.955
610	۳.,	37.955		8.045		45.315	Γ.	185.650		129.550	1	234.885	1	615.325	P	52.260	. •	184.195 D	2	30.115	۳.,	41.800	۳.	3.675 D	44.8	90 📍	192.355
611	۳.,	42.500	1	12.500		35.000		162.000	. •	150.000		238.000		498.000	P	53.000		194.500		37.000	۳.,	56.500		13.500 C	45.5	00	163.500
612	۳.,	57.200		2.900	D	33.400	Π.	122.450		185.550 D	1	270.550) 🗖	474.950 D	ľ	53.900 D		256.450 D	•	40.150	۳.,	72.500	۳.,	8.450	53.4	00	205.050
613	۳.,	91.100 [D 🔽	28.950	D 📍	108.500 D	1	420.500 D		314.000 D		487.000 C) 🗖	949.000 D	۲	90.200 D		383.000 D	•	22.200 D	۳.	27.250 D		28.195 D	47.2	00 D	193.000 D
614	n	ot tested		513.000	D	64.750 D		not tested	1	29.850 D		31.450 E)	120.850 D	ľ	4.210 D		19.950 D		4.800 D		8.505 D		2.340 D	7.7	00 D	38.050 D
615	۳.,	42.785		8.710		37.935		148.380		121.765		213.420	1	408.250	P	36.750 C		149.610	•	59.935	*	82.855		14.220	51.0	30	196.345
616	۳.,	57.390	1	8.410		46.660	۳.	182.015		141.755		212.090		417.310	P	43.050		164.600		35.850	۳.,	64.945	۳.,	10.625	42.1	90	161.510
No. of laboratories after elimination of outliers type A-L except E (without laboratories that only gave states but no measured values)		12	F	12	•	14	•	13	•	11		11	•	11		11	•	10		11	•	12	•	10 "		11 "	13
Explanation of outlier types																											
A: Single outlier (Grubbs)																											
B: Differing laboratory mean (Grubbs)																											
C: Excessive laboratory s.d.																											

(Cochran) D: Excluded manually

TEA

Laboratory	Sample A,B	Sampl C,		Sample E,F	Cereals, spike I-II	Cereals, spike III-IV	Sample G, H	Sample I, J	Sample K, L	Tomato juice, spike I-II	Tomato juice, spike III-IV	Sample M, N	Sample P, Q	Sample R, T	Sunflower, spike I-II	Sunflower, spike III-IV
Unit	µg/kg	μg/k	g	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
601	255.780	50.95		103.000	48.465	153.975	137.125	197.545	409.355	44.995		838.435	914.765	794.800 D	50.975	124.145
602	189.535	59.29	95	123.435	48.370	164.695	142.240	231.910	510.890	42.205	163.555	310.500	572.735	202.935	62.815	165.600
603	187.444	53.78	33	104.886	51.697	166.858	not tested	not tested	not tested	not tested	not tested	21.986 D	67.612 D	21.386 D	15.996 D	47.360 D
604	177.265	22.25	i0 F	102.920	29.575	111.385 D	210.930	258.490 C	623.990	58.000	228.685 C	120.200 D	269.935 D	166.885 D	28.840	124.700 D
605	▶ 160.100	72.40	00	135.750	61.500	163.650	179.400	287.400	568.100	46.000	186.500	1063.150	71784.600	598.300	73.300 D	214.300
606	118.550	10.15	50 D	150.500	44.850	not tested	167.500	273.500	601.500	54.700	195.500	▶ 387.000	573.000	337.000	27.600	134.500
607	186.950	62.55	i0 F	145.200	56.500	189.900	175.000	266.650	571.050	56.050	181.600	1134.700	1361.050	569.000	71.000	187.250
608	81.375 D	31.83	80 F	91.650	45.090	136.350	286.350	232.350	298.950 C	65.270	217.650	915.850	1441.000	246.200	20.525 D	83.605
609	327.875	100.72	20 D	184.115	51.365	185.740	183.950	300.440	655.505	48.360	188.730	not tested	not tested	665.225	78.945	186.345
610	227.185	26.87	'5	90.765	30.345	138.085	148.870	285.775	639.755 C	49.750	205.025	744.245 D	970.420	285.945	24.825	113.675
611	246.000	86.00	00	123.500	42.000	202.500	189.500	262.000	590.000 D	50.000	196.000	813.000	1187.000	709.000	69.500	189.000
612	170.350	80.70	00	145.050	50.050	152.350	125.450	D 176.750 D	404.550 D	48.900 D	144.850 D	532.800	661.200	281.350	54.950	144.750
613	419.000 D	155.50	0 D	328.000 D	113.500 D	446.500 D	440.500	D 684.500 D	1465.000 D	99.350 D	440.000 D				34.050 D	118.500 D
614	215.500 D	78.40	0 D	118.000 D	53.850 D	177.500 D	156.500	D 243.000 D	503.000 D	50.150 D	156.500 D	519.500 D	1026.500 D	397.500 D	58.850 D	150.500 D
615	224.455	78.58	5	128.440	47.760	157.010	141.275	254.195	564.505	44.130 C	177.900	895.645	1126.365	411.725	55.095	150.470
616	201.865	59.98	85 F	115.845	49.415	168.250	131.225	C 200.775 C	63.930 B	16.905 C	34.700 B	1146.375	1535.215	662.105	58.460	137.610
No. of laboratories after elimination of outliers type A except E(without laboratories that only gave states but no measured values)		* 1	2	14	* 14	• 12	► 10	P 10	• 8	* 10	¥ 10	* 10	• 11	P 11	P 11	* 12
Explanation of outlier types																
A: Single outlier (Grubbs)																
B: Differing laboratory mean (Grubbs)																
C: Excessive laboratory s.d.																
(Cochran)																

D: Excluded manually

7.12 Annex 12 – Characteristics after recovery correction

Precision estimates for ALT, AOH and AME calculated for naturally contaminated materials after recovery correction of results.

	Sample description	Sample A, B	Sample C, D	Sample E, F	Sample G, H	Sample I, J	Sample K, L	Sample M, N	Sample P, Q	Sample R, T
	Matrix		Cereals			Tomato juic			unflower see	
Compound	Sample	Sorghum	Triticale	Wheat	Tomato juice	Tomato juice	Tomato juice	Unpeeled	Unpeeled	Mixture
	Mean value, $\overset{-}{X}_{,}$ µg/kg	< 1	< 1	25.3	7.79	12.1	23.9	< 1	< 1	< 1
	Repeatability standard deviation <i>s</i> r, µg/kg			4.02	0.43	0.45	1.15			
ALT	Repeatability relative standard deviation, <i>RSD_{r,}</i> %			15.9	5.53	3.76	4.81			
	Reproducibility standard deviation <i>s</i> _R , μg/kg			9.05	0.80	1.48	4.22			
	Reproducibility relative standard deviation, <i>RSD_R</i> , %			35.8	10.3	12.3	17.7			
	HorRat value, recovery corrected			1.6	0.5	0.6	0.8			
	Mean value, X, µg/kg		145	19.6	6.50	9.49	18.4	30.9	190	64.1
	Repeatability standard deviation <i>s</i> _r , µg/kg		28.7	6.43	1.58	1.98	2.63	3.32	13.8	5.07
АОН	Repeatability relative standard deviation, <i>RSD</i> r, %		19.8	32.8	24.2	20.8	14.3	10.7	7.28	7.91
	Reproducibility standard deviation s _R , µg/kg		63.2	7.18	2.42	2.94	4.42	10.7	69.2	18.7
	Reproducibility relative standard deviation, <i>RSD</i> _R , %		43.5	36.6	37.2	31.0	24.0	34.6	36.4	29.3
	HorRat value, recovery corrected		2.0	1.7	1.7	1.4	1.1	1.6	1.7	1.3
	— Mean value, Х, µg/kg		14.7	66.9	10.3	13.4	24.8	3.55	13.6	3.61
	Repeatability standard deviation <i>s</i> r, µg/kg		2.18	7.04	4.86	3.48	3.44	0.91	1.90	0.46
АМЕ	Repeatability relative standard deviation, <i>RSD</i> r, %		14.8	10.5	47.3	26.0	13.9	25.7	13.9	12.9
	Reproducibility standard deviation s _R , µg/kg		5.27	25.4	5.94	5.94	4.67	1.94	5.11	1.42
	Reproducibility relative standard deviation, <i>RSD</i> _R , %		35.8	37.9	57.7	44.3	18.8	54.6	37.5	39.4
	HorRat value, recovery corrected		1.6	1.7	2.6	2.0	0.9	2.5	1.7	1.8

	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
	description	А, В	C, D	E, F	G, H	I, J	K, L	M, N	P, Q	R, T
	Matrix		Cereals			Tomato juic	e	S	unflower see	ds
Compound	Sample	Sorghum	Triticale	Wheat	Tomato juice	Tomato juice	Tomato juice	Unpeeled	Unpeeled	Mixture
	Mean value, $\overset{-}{x}_{,}$ µg/kg	66.4	10.8	< 3	163	245	491	40.1	73.8	11.07
	Repeatability standard deviation <i>s</i> r, µg/kg	4.03	0.73		8.95	21.6	21.1	5.09	8.09	0.93
TEN	Repeatability relative standard deviation, <i>RSDr</i> , %	6.07	6.75		5.46	8.80	4.30	12.7	11.0	8.39
	Reproducibility standard deviation <i>s_R</i> , μg/kg	27.4	3.30		13.9	32.2	87.3	9.72	21.9	4.02
	Reproducibility relative standard deviation, <i>RSD_R</i> , %	41.2	30.4		8.46	13.1	17.8	24.2	29.7	36.4
	HorRat value, recovery corrected	1.9	1.4		0.4	0.7	1.0	1.1	1.3	1.7
	Mean value, $\overset{-}{x}_{,}$ µg/kg	253	73.3	153.2	181	277	589	934	1327	575
	Repeatability standard deviation <i>sr</i> , µg/kg	41.9	10.6	17.9	11.0	33.6	30.9	182	183.8	84.7
TEA	Repeatability relative standard deviation, <i>RSD_{r.}</i> %	16.5	14.4	11.7	6.02	12.1	5.25	19.5	13.8	14.7
	Reproducibility standard deviation <i>s_R</i> , µg/kg	73.4	24.6	28.5	14.4	35.6	79.2	446	483	190
	Reproducibility relative standard deviation, <i>RSD_R</i> , %	29.0	33.5	18.6	7.90	12.9	13.4	47.8	36.4	33.1
	HorRat value, recovery corrected	1.4	1.5	0.8	0.4	0.7	0.8	2.9	2.3	1.8

Precision estimates for TEN and TEA calculated for naturally contaminated materials after recovery correction of results.

7.13 Annex 13 – Experimental details

When did you analyse the samples?

How many years of experience does the method conductor (analyst) have with LC-MS analysis of mycotoxins?

For how long (years) your lab has been analysing food for Alternaria toxins by LC-MS?

Is your laboratory accredited for the analysis of Alternaria toxins in food by LC-MS?

If YES, please write for which food matrix (matrices) is your laboratory accredited

How many samples does your lab analyse for Alternaria toxins in food per year?

Lab code	Sample analysis	Years of experience in mycotoxin analysis by LC-MS	Years of experience in <i>Alternaria</i> analysis by LC-MS	Accredited	Accredited matrices	Samples per year
601	9-11/01/2016	4 years	4 years	No		200
602	9 Nov 2015 (cereals)	6 years				
603	Cereals were analysed on 16 November while sunflowers were analysed on 18 November. The cereal sequence run well, while the sunflower sequence stopped during the night due to overpressure and was restarted the day after 19 November).	10 years	1 year	No		100
604	Nov 22	2	1	No		
605	16/10/215 Tomato Samples	3	1			400
606				No		
607	3-5/11/2015	0	0	No		0
608	1416.10.2015.	10	10	No		6000
609	2-12.11.2015'	3	0	No		
610	Sample preparation:	1 year	5 years	No	none	100
612	Tomato juice November 3	6 years	We are not analyzing alternaria toxins at the moment	No	-	0
614	November 3th, 4th and 5th	8	8+	For AOH and AME	Feed and Feed ingredients	
615	Nov 2015	5 years	5 years; group analysis of ALT, AOH and AME; not TEA and TEN	No		50
616	Tomato Juice 15/10/2015, Cereal 21-22/10/2105, Sunflower Sunflower seeds 28-29/10/2015 Seeds	1				

Did you find the instructions distributed for this MVS adequate? If NO, which parts do you think could be improved? What do you think about the reporting by ProLab/RingDat? Did you have any problems in using this platform? If YES, what kind of problems? Any other comments you wish to address?

Lab code	Instructions adequate?	Improvement	Reporting	Problems with the platform	kind of problems	Any other comments
601	Yes		Good reporting	No		
			platform			
602	Yes		I think that the reporting by ProLab/RingDat was very useful and easy to use	No		
603	Yes		Very clear and useful	No		
604	Yes		good	No		
605	Yes		Convenient and easy to handle	No		
606	Yes			Yes		
607	Yes		OK	No		NONE
608	Yes		OK	Yes	There is no option for inputting <lod< td=""><td></td></lod<>	
609	Yes		Easy to fill the tables.	No		
610	Yes		Quite ok. Copy- paste of the results works fine.	No		
612	Yes		Ok	No		-
614	Yes		not enthusiastic	Yes	time consuming	results including remarks: see Excel file
615	Yes		Inconvenient to transfer every single result from own Excel sheet into ProLab file.	Yes	Cannot open the file *.LA2	No
616	Yes		OK.	No		

Did you find the Method description (SOP) adequate? If NO, in which part(s) it could be improved? Were you able to follow the method in all details? If NO, which parts required deviation from protocol? Please include paragraph number and describe the deviation applied.

605 Yes No As we did not use the same day. 605 Yes No As we did not use the same column as mentioned in the SOP (7.1) (we used a a Reprosid Gold C18 column (150 * 2 mm, 3 µm particle size, Dr. Maisch GmbH, Ammerbuch, Entringen, Germany) we had to reduce the flow rate to 0.25 mL/min due to high pressure. 606 Yes Yes Yes 607 Yes Yes Second Particle size, Dr. Maisch GmbH, Ammerbuch, Entringen, Germany) we had to reduce the flow rate to 0.25 mL/min due to high pressure. 607 Yes Yes Second Particle size, Dr. Maisch GmbH, Ammerbuch, Entringen, Germany) we had to reduce the flow rate to 0.25 mL/min due to high pressure. 607 Yes Yes Second Particle size, Dr. Maisch GmbH, Ammerbuch, Entringen, Germany) we had to reduce the flow rate to 0.25 mL/min due to high pressure. 610 Yes Yes Second Particle size, Dr. Maisch GmbH, Ammerbuch, Entringen, Germany) we had to reduce the flow rate to 0.25 mL/min due to high pressure. 610 Yes No 6.3 SPE clean-up 611 Yes The total amount of solvents and solutions required overall could be mentioned (per SPE and matrix for example). No 6.6 We missed that for the first matrix analyzed 614 No 6.4 Specify here that so not possible to adjust the volume to 1.0 mL in step 6.6. We missed that for the first matrix analyzed <th>Lab code 601 602 603 604</th> <th>SOP adequate? Yes Yes Yes Yes</th> <th>Improvement</th> <th>Could you follow the method details? Yes Yes Yes No</th> <th>Deviation from protocol</th>	Lab code 601 602 603 604	SOP adequate? Yes Yes Yes Yes	Improvement	Could you follow the method details? Yes Yes Yes No	Deviation from protocol
Image: second					samples were processed independently on the same day.
606 Yes Yes Yes 607 Yes Yes Yes 608 Yes No at step 6.1. Extraction: 609 Yes Yes Secondary 610 Yes The total amount of solvents and solutions required overall could be mentioned (per SPE and matrix for example). No 6.3 SPE clean- up 612 Yes 6.4 Specify here that ehe glass receiving tubes should have volume scaling! Otherwise it is not possible to adjust the volume to 1.0 mL in step 6.6. We missed that for the first matrix analyzed No 6.6 We had trouble filtering the extracts of all three matrices bot worst were the cereal samples. 614 No 6.1 Extraction: Not able to shake at 600 1/min speed> horizontal shaker: 200	605	Yes		No	use the same column as mentioned in the SOP (7.1) (we used a a Reprosil Gold C18 column (150 * 2 mm, 3 µm particle size, Dr. Maisch GmbH, Ammerbuch, Entringen, Germany) we had to reduce the flow rate to 0.25 mL/min due to high
608 Yes No at step 6.1. Extraction: 609 Yes Yes Second 610 Yes The total amount of solvents and solutions required overall could be mentioned (per SPE and matrix for example). No 6.3 SPE clean- up 612 Yes 6.4 Specify here that ehe glass receiving tubes should have volume scaling! No 6.6 We had trouble filtering the extracts of all three matrices bot worst were the volume to 1.0 mL in step 6.6. We missed that for the first matrix analyzed We used our own 0.45 μm filters instead. 614 No 6.1 Extraction: Not able to shake at 600 1/min.	606	Yes		Yes	1
609 Yes Yes 610 Yes The total amount of solvents and solutions required overall could be mentioned (per SPE and matrix for example). No 6.3 SPE clean-up 612 Yes 6.4 Specify here that ehe glass receiving tubes should have volume scaling! Otherwise it is not possible to adjust the volume to 1.0 mL in step 6.6. We missed that for the first matrix analyzed No 6.6 We had trouble filtering the extracts of worst were the cereal samples. 614 No 6.1 Extraction: Not able to shake at 600 1/min speed> horizontal shaker: 200 1/min. No					
610YesThe total amount of solvents and solutions required overall could be mentioned (per SPE and matrix for example).No6.3 SPE clean- up612Yes6.4 Specify here that ehe glass receiving tubes should have volume scaling!No6.6 We had trouble filtering the extracts of all three otherwise it is not possible to adjust the volume to 1.0 mL in step 6.6. We missed that for the first matrix analyzedNo6.1 Extraction: Not able to shake at 600 1/min speed> horizontal shaker: 200 1/min.					1
612Yes6.4 Specify here that ehe glass receiving tubes should have volume scaling! Otherwise it is not possible to adjust the volume to 1.0 mL in step 6.6. We missed that for the first matrix analyzedNo6.6 We had trouble filtering the extracts of all worst were the cereal samples. We used our own 0.45 µm filters instead.614NoNo6.1 Extraction: Not able to shake at 600 1/min speed> horizontal shaker: 200 1/min.			solvents and solutions required overall could be mentioned (per SPE and matrix for		
Not able to shake at 600 1/min speed> horizontal shaker: 200 1/min.			6.4 Specify here that ehe glass receiving tubes should have volume scaling! Otherwise it is not possible to adjust the volume to 1.0 mL in step 6.6. We missed that for the first matrix		trouble filtering the extracts of all three matrices bot worst were the cereal samples. We used our own 0.45 µm filters instead.
	614	No		No	Not able to shake at 600 1/min speed> horizontal shaker: 200
	615	No	1) A note related to	No	

Lab code	SOP adequate?	Improvement	Could you follow the method details?	Deviation from protocol
		occuring memory effects of Alternaria toxins in HPLC analysis should be added.		filtration, see comment above. Cellulose membrane filters $(0,2 \ \mu m)$ have to be used after centrifugation $(10.000 \ g)$ of the measurement solution.
616	Yes		No	6.1 The samples were shaken on an orbital shaker, not a hand shaker.

Did you encounter any problems during the analysis? If YES, what were the specific problems and to which samples did they apply? Was the analytical process split over staff?

Did you notice any abnormality, that however seem to have no effect on the result?

	Problem				carrea.	
Lab code	during	Problem description	Process split?	Abnormality	Abnormality description	
(01	analysis	-	N	N	•	
601	Yes	DMSO evaporated for the cereal matrix. Reconstitution was done in 900 µl of water anyway	No	No		
602	Yes	During the LC/MS-MS analysis of the three different matrix I noticed that the method used dirtied the chromatographic column and increased the pressure column	No	Yes	I calculated the ion ratio of all test solutions and of all spiked samples. For some samples the ion ratio was not in accordance with the tolerance intervals. In particular B192 for AOH, Spike I sunflowers and Spike II sunflowers for ALT were not in accordance with the tolerance intervals criteria.	
603	Yes	Although the final purified extracts were clear, their analysis by UPLC-LC/MS gave big problems. In particular, the pressure of the colum tend to increase up to the maximum limit during the sequence and the run stopped several times. Also, the shape of the peacks get worse over the sequence. This was observed despite the column was new when it has been used for the first sequence (cereals) and had been washed repeatedly during the second	No	No		
604	No		Yes	No		
605	No		No	Yes	Some of the sunflower and cereal samples remained turbid after filtration. We did not see an increased pressure; but this could become a problem if many samples have to be analyzed.	
606	No		Yes	No		
607	No		No	No		
608	No		No	No		
609	Yes	Evaluation of the volume after evaporation was impossible: all samples and calibrants were reconstituted with 900 microliter of water to 100 microliter of DMSO	Yes	No		
610	Yes	6.6 sample reconstitution	Yes	Yes	6.3 SPE clean-up	
612		-	No	Yes	Very cloudy extracts	
	Yes	Equilibrium problems with the column at the high pH. Reinjected the vials for the cereal samples the next day since pressure dropped during the sequence.			even after filtration for the cereals	
614 615		column at the high pH. Reinjected the vials for the cereal samples the next day since pressure dropped	No No	No No	even after filtration	

If YES, please describe and report for which samples (codes) they occurred.

Lab code	Problem during analysis	Problem description	Process split?	Abnormality	Abnormality description
		sample injection two injections of methanol were applied. Sampler needle was washed 5 times with acetonitrile after each injection.			
616	No		No	No	

Were you familiar by practice with all the steps performed during the analysis?

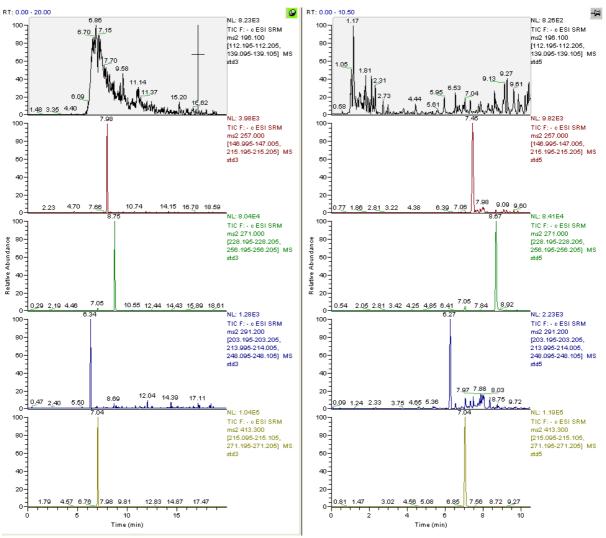
If NO, please describe and report for which steps (Please refer to the respective paragraph number in the SOP)

Any other information that you would like to add?

Did you need to include any "overnight" stops in the analysis of the MVS samples without performing new calibration when resuming the sequence?

If YES, please state for which samples and at what stage of the analysis?

How did you intergate the signals?


If you integrated automatically, for how many chromatograms was it necessary to re-integrate analyte peaks? (If none, put 0)

Lab code	Familiarity	Problem description	Any other information	Overnight stop	Which sample/stage of analysis	Integration	Re- integration
601	Yes		2 internal standards were added after weighing of the samples ([2H4]-AME and [13C6,15N]-TeA)	No		Automatic with verification	0
602	Yes		During the analysis I have problems with peak shape so I prefer to chance the chromatographic column. All the samples were analysed with the same chromatographic column.	No		Manual	
603	Yes			No		Manual	
604	Yes		Samples arrived warm with no dry ice	Yes		Automatic with verification	
605	Yes			No		Manual	0
606	Yes			No		Automatic with verification	
607	Yes			No		Automatic with verification	0
608	Yes		at the 6.6. step sample reconstitution - the sample volume seems to vary across the vials	No		Automatic with verification	60
609	Yes		The method demands a lot of pipetting!	No		Manual	
610	Yes		Analyte peaks of 35 out of 390 chromatograms were re-integrated manually.	No	We had overnight stops between sample preparation (Extraction+SPE+solvent evaporation) and LC-MS	Automatic with verification	35

Lab code	Familiarity	Problem description	Any other information	Overnight stop	Which sample/stage of analysis	Integration	Re- integration
					analysis (+sample reconstitution).		
612	Yes		We mistakenly evaporated the extracts in tubes without volume scaling for the tomato juice (the first matrix we analyzed) and had to transfer the residues to new tubes. Probably poorer recovery because of this (but possibly the same poor recovery in all samples and spiked samples).	No		Automatic with verification	40
614	Yes			No		Manual	0
615	Yes		Good organization/coordination of the trial, all information regarding time schedule are available; all questions have been quickly answered by IRMM.	No		Manual	
616	Yes			No		Automatic with verification	200

7.14 Annex 14 – F5 chromatogram

A standard mixture solution containing the five *Alternaria* toxins involved in the MVS was injected onto pentafluorophenyl (F5) HPLC column. The separation was carried out at acidic (left side) and basic pH (right side). The figure shows the chromatograms of compounds. Acceptable peak shapes could be obtained for all toxins, except for TEA.

Europe Direct is a service to help you find answers to your questions about the European Union Free phone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu

How to obtain EU publications

Our publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

JRC Mission

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new methods, tools and standards, and sharing its know-how with the Member States, the scientific community and international partners.

Serving society Stimulating innovation Supporting legislation

doi:10.2787/50804 ISBN 978-92-79-59856-2