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Executive summary 

Agriculture is a multi-goal system since it has to meet the increasing demands in food 
and fibers, while continuing to preserve the surrounding environment. The Cross-
Compliance (CC), introduced into the last 2003 CAP revision, aims to push the 
farmers into adopting more sustainable agricultural practices as prerequisite to receive 
direct payments.  

The Cross-Compliance Assessment Tool (CCAT) develops an integrated simulation 
platform to quantify the effects of CC measures by means of environmental 
indicators.  

Our CAPRI/Europe-DNDC metamodeling approach reduces the running time and 
memory consumption of the original DNDC code; it has been integrated into CCAT 
to estimate the N2O emission, N leaching and N surplus, according to few pre-
selected CC scenarios. The metamodels are implemented in R computing 
environment by using the Random Forest package. 
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1 Introduction  

The Common Agricultural Policy (CAP) introduced a compulsory Cross-Compliance 
(CC) tool to check up the respect of several environmental, food safety, animal 
welfare, and animal and plant health standards (SMRs) as well as the maintenance of 
farmlands in good agricultural and environmental condition (GAECs), as prerequisite 
for receiving direct payments. However nowadays it still remains quite difficult to 
quantify the effect of this compulsory cross-compliance by means of indicators. To 
address this topic the CCAT project aims to develop a simulation platform integrating 
different models to provide an exhaustive cost and benefits analysis of CC at the 
European scale, helping the environmental policy makers to better understand 
complex and dynamic systems and to face future issues. 

Our CAPRI/Europe-DNDC modeling approach have been included into the CCAT to 
estimate several environmental indicators, such as N2O emissions, N leached and N 
surplus, according to selected agro-environmental measures and different agricultural 
land uses. 

2 Materials and Methods 

2.1 Introduction 

The frequent use of simulation based models for analyzing of complex phenomena is 
changing the traditional approaches to environmental and hazard problems. The 
continuous improvement of computer performance allows for more detailed 
mathematical representations, based on space-time discretisation, to be developed and 
run to describe, in quantitative manner, complex real systems, reproducing the way 
their spatial patterns evolve and the relationships of physical processes and socio-
economic developments [Follador et al., 2008]. 

To assess the CC effects on the European environment a modeling framework that 
integrates the agro-economical CAPRI model with the biogeochemical model 
Europe-DNDC, have been developed. While CAPRI simulates how the socio-
economical aspects impact on land use and farm management, DNDC uses these 
information and other physical parameters to estimate the selected environmental 
indicators such as N2O emission, N leached, N surplus from agricultural soils (Fig 1). 
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Figure 1: simplified framework of CAPRI/Europe-DNDC modeling approach 

2.2 Europe-DNDC description 

The original Denitrification-Decomposition model (DNDC) [Li et al., 2000], a 
process-oriented biogeochemistry model for agro-ecosystems, is a mechanistic 
detailed model specifically created for using at field level, but subsequently 
developed to be applied at regional scale. DNDC simulates the carbon trend, the 
nitrogen balance and trace gas emissions from agricultural soils. It is comprised of 
two components which integrate ecological drivers (e.g., climate, soil, vegetation, 
etc.) and soil environmental factors (e.g., temperature, PH, etc.) on one hand, and soil 
environmental factors and soil biogeochemical reactions on the other hand [Li et al., 
2006]. The first component consists of 3 submodels (soil climate, crop growth and 
decomposition); it calculates the state of soil-plant system such as soil physical and 
chemical status, vegetation growth and organic carbon mineralization. The second 
component is comprised of nitrification, denitrification and fermentation submodels; 
it predicts the main processes involved in the GHGs production, by using the soil 
environmental data. 

Europe-DNDC partially modifies/integrates the original DNDC code to adapt it to our 
applications, allowing a more flexible simulation of a large number of spatial-
agricultural units and including the possibility to select up to ten different crops to be 
simulated into a specific simulation unit [Leip et al., 2008]. 

2.3 HSMU support 

The HSMU (Homogeneous Spatial Mapping Unit) is the minimal geographical unit 
used for the spatial simulation. The Europe of 25 Member States is composed by 
207439 HSMUs which are multipart polygons derived from the overlay of four 
different datasets: administrative boundaries (Gisco NUTS2 e NUTS3), land cover 
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(CORINE level 3), soil (SGDB classification) and slope data (CCM DEM 250 
divided in five classes).  

The main environmental (meteorological and soil datasets) and social-economic 
(farm management) parameters are extracted at HSMU level performing zonal 
statistic or crosstab analysis. The meteorological data (temperature, precipitation, 
relative humidity, evaporation, global radiation) at 1x1 km spatial resolution and 
daily temporal resolution from 1901-2000 [Orlandini and Leip, 2008] has been 
obtained combining MARS grid weather data (interpolated daily weather data at 
50x50 km spatial resolution) with the ATEAM/CRU data (interpolated monthly 
climate data at 10'x10' spatial resolution). The soil information such as initial SOC, 
clay content, etc. were obtained from the 1x1 km2 soil raster datasets, processed on 
the basis of the European Soil Database [Jones et al., 2005]. The soil database was re-
sampled using a mask for annual crops and gap-filled to eliminate bias in the 
parameters due to inconsistent land-use information. Some important farm 
management parameters at HSMU level, such as organic and mineral N application 
rates, and crop yield, derive from the spatial disaggregation of the information 
estimated by CAPRI at NUTS 2 level (regional database) [Leip et al., 08]. 

2.4 Farming management scenario conceptualization 

Even though the SMRs and GAECs are country or even region specific, we 
generalized some of these measures across the EU25 Member States, according to the 
practical feasibility and implementation into our modeling approach. In this 
contribution we only present the results for corn crops. To reduce the time and 
memory consumption, also considering the number of scenarios (7) and the length of 
the period (1990-99) to simulate, we decided to select a representative sample subset 
among the entire EU25 agricultural lands. The final HSMU set (about 20000) has 
been chosen by applying a minimum threshold in land use (percentage of corn crops 
on HSMU agricultural land > 10%). 

The definition of scenarios is necessary whenever we want to compare the estimated 
agricultural activities’ effects under CC vs. the conventional practices, to carry out a 
cost-benefit analysis in terms of ecosystem preservation, yield, market 
competitiveness, soil fertility, GHG emission, etc. This first assessment should 
provide a deeper knowledge of European agro-environmental policy impact, offering 
a more exhaustive overview for future plans. 

2.4.1 Corn-Reference scenario (S1) 

The baseline scenario includes only a corn monoculture, with one tillage application 
and a tillage depth of 20cm. The simulated period is 10 years of no irrigated corn, 
without rotations or fallow, within the previously selected HSMUs. We apply both 
fertilizer (1) and manure (2) N inputs, per year. The second manure spreading 
includes the green manure (residue). The fertilizer N input is set to 0 during the 
winter. Other N inputs are atmospheric deposition, biological fixation and root 
residue. 
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2.4.2 Corn-No till scenario (S2) 

The no tillage scenario differs from the reference scenario in the absence of tillage 
application. This practice of turning the soil before planting buries crop residues, 
animal manure and troublesome weeds and also aerates and warms the soil. But it can 
also increase the soil vulnerability to erosion by wind and water [Huggins et al., 
2008]. No till farming in contrast try to minimize soil disruption and have been 
suggested to increase carbon storage in soils (GAEC02: surface protection). 

2.4.3 Corn-Max Manure scenario (S3) 

This scenario limits the N in manure spreading to 170 kg N/ha y-1 (with few 
exceptions), compared to the reference scenario. (SMR04: restriction of organic 
manure application). 

2.4.4 Corn-Catch crop scenario (S4) 

In this scenario we simulate two cycles of corn-alfalfa cropping system. One cycle is 
comprised of a rotation between a yielding crop (corn) for 2 years, and a catch crop 
(alfalfa) which lasts 3 years. We selected alfalfa because of its well known ability to 
fix N in the soil. The corn crop receives both fertilizer (1) and manure (2) 
applications, and it is tilled at 20 cm depth. We apply one manure spreading without 
tillage on the catch crop. (GAEC01, GAEC02: surface protection; maintenance of 
Soil Organic Matter-standard for crop rotation). 

2.4.5 Barley -Reference scenario (S5) 

The baseline scenario is the same as S1 with Barley instead of corn, i.e. a barley 
monoculture, with one tillage application and a tillage depth of 20cm. The simulated 
period is 10 years of no irrigated barley, without rotations or fallow, within the 
previously selected HSMUs (see further S1). We apply both fertilizer (1) and manure 
(1) N input. Other N inputs are atmospheric deposition, biological fixation and root 
residue. 

2.4.6 Barley --No till scenario (S6) 

The no tillage scenario differs from the reference scenario in the absence of tillage 
application. This practice of turning the soil before planting buries crop residues, 
animal manure and troublesome weeds and also aerates and warms the soil. But it can 
also increase the soil vulnerability to erosion by wind and water [Huggins et al., 
2008]. No till farming in contrast try to minimize soil disruption and have been 
suggested to increase carbon storage in soils (GAEC02: surface protection). This 
scenario is the same as S2 with Barley instead of corn. 
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2.4.7 Barley --Max Manure scenario (S7) 

This scenario limits the N in manure spreading to 170 kg N/ha y-1 (with few 
exceptions), compared to the reference scenario. (SMR04: restriction of organic 
manure application). This scenario is the same as S3 with Barley instead of corn 

Table 1: Description of scenarios and measures related to SMRs and GAECs in 
Europe-DNDC approach 

SMR  Name Description DNDC scenario and parameterisation 

SMR2 Maximum manure 
N application 
standard  

The amount of 
applied N in manure 
and excreted during 
grazing may not 
exceed 170 kg N per 
ha in a region. Excess 
manure is transported 
or processed. 

Comparison of   

S1: Corn Reference Scenario1 with 

S3: Corn Max Manure scenario2  

Comparison of   

S5: Barley reference scenario1 with  

S7: Barley max manure scenario2 

SMR8 Growing winter 
crops 

Growing catch crops 
will result in i) less N 
leaching below 
rooting zone, ii) less 
surface runoff, and iii) 
less requirement of 
fertilizer N in the 
following year.  

Comparison of   

S1: Corn Reference Scenario  with 

S4: Corn Catch crop scenario3  

 

GAEC  Name Standards DNDCD scenario and parameterisation 

GM3 Minimum 
coverage-arable 
land 

Vegetative cover 
between agricultural 
crops, which is then 
ploughed into the soil, 
also termed as catch 
crops, green manure 
and winter crops. 

Comparison of   

S1: Corn Reference Scenario  with 

S4: Corn Catch crop scenario3  

Actually equal to SMR8 

GM4  Tillage method Zero tillage Comparison of   

S1: Corn Reference Scenario  with 

S2: Corn No tillage Scenario4 

Comparison of   

S5: Barley reference scenario with 

S6: Barley No tillage scenario4. 
1 The baseline scenario includes only a corn or barley monoculture, with one tillage application and a 
tillage depth of 20cm  
2 This scenario limits the N in manure spreading to 170 kg N/ha y-1 (with few exceptions), compared to 
the reference scenario.  
3 Catch crops scenario includes two cycles of corn-catch crop system which lasts 5years (2 years of 
corn + 3 years of alfalfa). Corn like baseline, alfalfa without tillage and fertilizer application 

4 The no tillage scenario differs from the reference scenario because of the absence of tillage 
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3 CAPRI/Europe-DNDC output 

3.1 S2 vs. S1 

The prediction by Europe-DNDC models (Fig 2) indicates that conversion from 
conventional tillage to no tillage results in a general reduction of N2O emission, even 
though an increase is pointed out for a group of HSMU. This different behavior can 
be explained by considering the different water soil contents and texture across EU. 
[Grant et al., 2004] show how tillage may lead to more nitrification (and thus more 
N2O) in drier soil, by increasing decomposition of organic matter. In the soil with 
higher soil water, and thus a reduced air-filled porosity, the no-till results in high N2O 
flux due to the enhancement of denitrification [Ball et al., 1999]. [Rochette, 2008] try 
to generalized these conclusions; he shows as no-till generally increase N2O 
emissions in poorly aerated soil, while its impact in soil with good and medium 
aeration is neutral or positive. Our results covering the whole EU25 territory showed 
that a conversion to no-till leads to a reduction of N2O of 20% on the entire subset, 
compared to the baseline scenario. 
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Figure 2: Corn - No-till scenario vs. Baseline scenario: N2O, N leaching and N 
surplus. In the left panels: scattergrams of environmental indicators, no-till vs. 
baseline scenario. In the right panels: boxplot of environmental indicators, no-
till vs. baseline scenario. The t value (paired-T test) points out the big difference 
between the no-till scenario output and the baseline scenario output; the very 
little p-value confirms the significativity of this difference.  
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The N (NO3-) leaching from fields is directly controlled by hydrogeological and 
plant-soil processes, both influenced by numerous factors such as climate conditions, 
soil properties and farming management (tillage method, fertilization, crop rotations, 
etc.). The simulated output indicates that the conversion of conventional tillage to no-
till decreases the N leaching loss (-13%). This result can be explained by means of N 
mineralization reduction, resulting in increased SOC and less inorganic N available 
for leaching [Farahbakhshazad et al., 2008]. 

The N surplus slightly increases in the no-tillage scenario (+6%); as the manure and 
fertilizer N input are the same of the baseline scenario, this difference has to be 
explained by means of the other N sources considered for the N surplus calculation. 
The conversion from tillage to no till caused a diminution of plant uptake and N input 
from root residue, and a slightly increase in N fixation. The reduction in plant uptake 
can require the use of extra nitrogen fertilizer to meet the nutritional needs of some 
crops, because increasing organic matter at the surface immobilizes nutrients, 
including nitrogen [Huggins et al, 2008]. 

3.2 S3 vs. S1  

We split the manure amendment to 2 applications; the second one includes the green 
manure (residue). The tillage turns the soil before planting and buries the manure, 
limiting the losses occurring after application, such as NH3 volatilisation, NO3- 
leaching and denitrification [Salazar et al., 2004].  

By applying a maximum threshold of 170 kgN/ha y-1 in the first organic N input1, we 
reduced the environmental impact of corn cropping systems. The estimated indicators 
(Fig 3) show a decrease of N2O   (-24%), N leaching (-14%) and N surplus (-15%). 
This scenario could introduce new additional costs for enlarging the place to store the 
manure, for those farmers used to spread it as litter [Follador et al, 2009]. 

 

                                                 
1 This threshold is not applied to green manure – our second amendment.  
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Figure 3: Corn - Max manure scenario vs. Baseline scenario: N2O, N leaching 
and N surplus. In the left panels: scattergrams of environmental indicators, Max 
manure vs. baseline scenario. In the right panels: boxplot of environmental 
indicators, max manure vs. baseline scenario. The t value (paired-T test) points 
out the big difference between the max manure scenario output and the baseline 
scenario output; the very little p-value confirms the significativity of this 
difference.  
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3.3 S4 vs. S1 

Growing catch/break crops, under no-till, is one of the best practices of conservative 
agriculture [FAO, 2005] and it completely replaces the set-aside from 2008. Its well 
known benefits include: (a) prevention of erosion by anchoring soil and lessening the 
impact of raindrops; (b) reduced risk of deep drainage; (c) more efficient use of 
water; (d) add plant material to the soil for organic matter recovery; (e) some plants, 
especially leguminous species, increase the N fixation. 

Moreover, in comparison with the reference scenario, the catch crop scenario (Fig. 4) 
reduced the N2O emission (-27%), the N leaching (-20%) and the N surplus (-34%). 
These results are the obvious consequence of reduced N input from fertilization and 
manure amendment on the no-tilled alfalfa and of the increased N fixation capacity of 
this crop. 
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Figure 4: Corn - Catch crop scenario vs. Baseline scenario: N2O, N leaching and 
N surplus. In the left panels: scattergrams of environmental indicators catch 
crop vs. baseline scenario. In the right panels: boxplot of environmental 
indicators, catch crop vs. baseline scenario. The t value (paired-T test) points out 
the big difference between the catch crop scenario output and the baseline 
scenario output; the very little p-value confirms the significativity of this 
difference.  
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3.4 S6 vs. S5 

Compared with the previous Corn-scenarios, the differences between reference and 
alternative managements are less evident, pointing out how these conservative 
measures did not considerably affect the environmental indicators’ estimation on the 
barley HSMU subset. 

Once more, the conversion from conventional tillage to no tillage (Fig.5) results in a 
general slight reduction of N2O emission (-4%). As formerly remarked, the N2O 
emission across the European farmlands strictly depends on the soil texture and water 
contents; [Rochette, 2008] he showed as no-till generally increase N2O emissions in 
poorly aerated soil, while its impact in soil with good and medium aeration is neutral 
or positive. 

The N (NO3-) leaching from fields is directly controlled by hydrogeological and 
plant-soil processes, both influenced by numerous factors such as climate conditions, 
soil properties and farming management (tillage method, fertilization, crop rotations, 
etc.). The simulated output indicates that the conversion of conventional tillage to no-
till slightly reduced N leaching loss (-2.45%) on the barley subset. 

 The N surplus didn’t change in the no-tillage scenario (-0.006%). We observed a 
diminution of plant uptake and N input from root residue, and an increase in the N 
fixation.  
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Figure 5: Barley - No till scenario vs. Baseline scenario: N2O, N leaching and N 
surplus. In the left panels: scattergrams of environmental indicators no till vs. 
baseline scenario. In the right panels: boxplot of environmental indicators, no till 
vs. baseline scenario. The t value (paired-T test) points out the difference 
between the N2O e N leaching in no till scenario output and the baseline scenario 
output; the little p-value confirms the significativity of this difference. The N 
surplus outputs don’t show significant differences. 
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3.5 S7 vs. S5 

The number of HSMUs with a manure amendment > 170 kg/ha y-1 is quite small. 
Consequently the impact of this measure is not as evident as in the previous corn 
cropping systems. The tillage turns the soil before planting and buries the manure, 
limiting the losses occurring after application, such as NH3 volatilisation, NO3- 
leaching and denitrification [Salazar et al., 2004].  

By applying a maximum threshold at the organic N input, we have observed a slight 
decrease in all environmental indicators (Fig.6): N2O (-1.7%), N leaching (-0.07%) 
and N surplus (-3%). This scenario could introduce new additional costs for enlarging 
the place to store the manure, for those farmers used to spread it as litter [Follador et 
al, 2009]. 
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Figure 6: Barley - Max manure scenario vs. Baseline scenario: N2O, N leaching 
and N surplus. In the left panels: scattergrams of environmental indicators, Max 
manure vs. baseline scenario. In the right panels: boxplot of environmental 
indicators, max manure vs. baseline scenario. The T test analysis point out the 
very little differences between the max manure and reference outputs. 
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4 Metamodeling  

4.1 Introduction 

The using of metamodel to approximate expensive computer analysis codes knows 
today an increasing application in many disciplines. A metamodel can be considered 
as a model of a model, i.e., a statistical approximation or a simplified description of a 
complex system by means of computer codes [Simpson et al., 2001]. 

Despite the great powers of modern calculators, many models require a long running 
time and a large memory space to compute the responses vector. The use of 
deterministic modeling at macro-scale applications is often prohibited, because of 
computational needs and parameterization constraints [Pineros et al., 2005]. 

At the same time the functional relationship between input and output could be not 
clear and hidden behind a complex, long and sometime confused computer code.  

Statistical techniques are widely used to simplify this analysis by reducing time and 
memory consumption and underlining the cause-effect connection between predictors 
(x) and responses (y). 

If we represent the original model (e.g., DNDC) through the functional relationship: 

 

y=f(x)            [1] 

 

its approximation will be 

 

y*=f m(x),  so that  y=y*+E         [2] 

 

where E is an error term including both the random and metamodel fitting errors. 

 

Typically the construction of a metamodel “fm” involves the following steps: (1) 
choose a subset of input variables to feed the metamodel and generate data. (2) 
Choose the mathematical form of “fm”. (3) Design the calibration and validation sets 
from the previously selected subset. (4) Fitting the metamodel to the observed data by 
means of training and test. 

The metamodelling process in general decreases the dimensionality of the problem by 
reducing the number of factors (design variables) used by the original model. This 
screening out step considers only the most important predictors for a specific 
application among all the x elements. 
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4.2 Metamodels development 

Among the numerous statistical methods existing in the engineering design literature, 
we decided to focus on 3 models to represent our data: (a) Neural Network, (b) 
Support Vector Machine and (c) Random Forest. All these approaches are well 
designed for complex and non-linear systems; moreover they are able to process a 
large volume of information. In order to perform the analysis with the best suited 
approach, we first performed a model comparison. We first provide a short 
description of the three models, dedicating slightly more attention to the Random 
Forests which proved to show the best performance (see section 4.3) and has been 
selected to be used in our project. 

4.2.1 A rapid overview on Neural Networks (NN) 

An artificial neuron is the basic unit of Neural Networks (NN) and it is comprised of 
3 elements (Fig 5): 

� An input layer with a specific number of input cells “(xi)i=1…m”. 
� A net of synapses and connections, characterized by weights “(wi)i=0…m”. the 

inputs will be integrated by means of additive function “Σ”. 
� An output node which stores the answer of the neuron to the stimulus. It is the 

result of the weighted integration of inputs, limited by an activation function 
“g”.  

 

Figure 7: Simplified graphical description of an artificial neuron    
[Follador, 2008] 

 

A neuron can be described as follows [Follador, 2008]: 
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where “wok” is called bias and “φ” is the sigmoid (activation function) we used. 

The neural networks (NN) are parallel computational models composed of a group of 
densely interconnected adaptive processing units, called neurons (Fig 6) The 
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disposition and the number of cells, synapses and hidden layers define the topology of 
the NN.  

 

 

Figure 8: Graphical representation of Neural Networks. It is comprised of one 
input layer, a series of weighted synapses between cells, hidden layers and one 
output layer [Follador, 2008]. 

 

NN are adaptive models which learn by examples. Here we developed a Multilayer 
Perceptron (MLP), the most famous class of feedforward NN with supervised training 
[Follador, 2008; Kanevski et al., 2004]. The MLP is composed by one hidden layer 
and learns through a backpropagation algorithm. The best net minimizes the MSE 
between real output (i.e., DNDC-EU output) and the predicted ones [Follador et al., 
2008; Villa et al., 2007] The R package nnet [Venables et al., 1999] was downloaded 
and implemented in our metamodel to carry out the training-optimization step. 

For further information on neural networks we refer the reader to the suggested 
references. 

4.2.2 A rapid overview on Support Vector Machine (SVM) 

The Support Vector Machine has been introduced by [Boser et al., 1992] and was 
originally designed to address classification problems. Afterwards [Vapnik, 1995] 
applied the SVM to regression problems; it has proven to be a powerful and robust 
methodology for learning from empirical data. 

We suppose to have a random pair (X,Y), where X is the vector of explanatory 
variables and Y is the vector of real output value. We are given a learning set of “n” 
i.i.d.2 observations of (X,Y): (xi,yi)i=1…n , to define and train the learning machine. The 
aim is to predict the target variable from the input set according to a few 
minimization-optimization steps.  

We used a SVM regression with a Gaussian kernel, so that 3 parameters had to be 
tuned by means of the tune.svm function (cross-validation) included into the e1071 R 
package: 1) “є” of the loss function, 2) the regularization parameter “C”, 3) the 
Gaussian Kernel parameter “γ”.  

                                                 
2 i.i.d. : independent and identically distributed. 
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Due to the complexity of this approach, we skip the theoretical formulation, and let to 
the readers the possibility of consulting the recommended references. 

4.2.3 A rapid overview on Random Forest (RF) 

Random Forest is an aggregation of binary regression trees, a statistical method for 
regression function estimation, and a learning method, the bagging, based on a 
random combination of numerous regression functions [Villa, 2009].  

In bagging each tree growths independently from the other ones by using a bootstrap 
sample3 of the data set [Liaw et al, 2002].  At the end it averages the estimates of 
regression function out, obtained from the boostrap samples; the general steps could 
be resumed as follows: 

� Create the bootstrap samples ζb , where b=1,…,B replica 
� Calculate the regression tree ψb* estimated from ζb 
� Estimate ψ(x) for all (x): 
 

∑
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x
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1

)( ψψ          [4] 

[Breiman, 2001] add some improvements to this algorithm: 

1) An “out of bag” error is calculated at each step (B is growing). It represents 
the mean of the errors of each estimator on the data not used to build it (not in 
ζb): 
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The OOB helps to prevent the overfitting and stops the algorithm once 
stabilized. 

2) A layer of randomness: for each node the best split is carried out by using a 
subset of randomly selected “q” predictors. An advisable choice is q=√p into 
the whole set of (Xi)i=1…p predictors. In this way the regression function 
ψb*(x) becomes more robust to outliers and noise, and performs very well 
compared to many other classifiers. 

 

The random Forest is very user-friendly and easily parallelized. Moreover it provides 
useful information about the estimate of error and the variable importance. To 
calculate the last one, the value of the variable is randomly permutated and the loss in 
MSE compared to the original value, is stored. The bigger this loss, the most 
important is the predictor for the output estimation (see Annex 1). 

                                                 
3 The dataset is composed of (X,Y)i=1…p couples of random variables, where X includes both 

quantitative or qualitative predictors and Y is the quantitative variable to be predicted by 
using X. The boostrap subsample is a random sample with replacement in “n” observation of 
(X, Y). In RF we create B boostrap samples to train the model.  
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As showed in Fig. the forest error converges to a limit as the number of trees into the 
forest becomes large (e.g., 500).   

4.3 Metamodels’ performance comparison 

From the original predictors vector x we screened out the less important ones for the 
estimation of the studied environmental indicators; the final set is composed of (x,y)s 
selected couples. 

The calibration subset include 80% of these input/output data (xi, yi)
s, randomly 

selected, while the validation has been based on the remaining 20%.  

The first results of the training and testing phases have been used to assess the 
metamodels behaviors; by comparing their performances we have been able to choose 
the best statistical method for our application (Fig 7). 

The error during the calibration and validation was calculated comparing the true 
output “y=f(x)” (estimated by DNDC-EU) vs. the values predicted by the metamodel 
“y*=f m(xs)”. 

 

Figure 9: metamodels’ performance at HSMU level. Both train and test steps are 
displayed. We selected Random Forest because of its better behaviour. The error 
of RF deceases rapidly and becomes stable as the number of trees increases into 
the forest. 
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The Neural Network did not overfit but it gave the worst prediction; e.g., in 
predicting the Corg the MSE (mean squared error) during the training was 393*106 
vs. 62*106 for SVM and 85*106 for RF. The MSE during the test step was 402*106 
vs. 77*106 for SVM and 63*106 for RF. Consequently we decided to use the Random 
Forest to create a metamodel of DNDC-EU. RF will be useful also during the 
variables’ importance assessment. The SVM performance was quite similar to the RF 
one, with a higher validation MSE. 

4.4 Integration of RF metamodel into CCAT 

To assess the impact of Cross Compliance measures on air, water and soil attributes a 
simulation platform, which integrates several models, have been developed. This tool 
(Cross Compliance Assessment Tool) allows studying the changes in previously 
selected environmental indicators (outputs), according to a specified scenario 
(inputs). The DNDC-EU metamodels represent only a part of this platform and it is 
used to estimate the N2O emission, the N leached, the N surplus across the EU 
agricultural lands (Fig 8). 

 

Figure 10: Metamodeling approach into CCAT 

At the beginning the simulations through Europe-DNDC have been carried out at 
HSMU level. The selected subsample included about 20000 HSMU among the whole 
EU25 data set. The results have been displayed with this detailed resolution. 

Afterward we had to upscale to CCAT-NUTS level to integrate our metamodel into 
the final platform. 

The aggregation of HSMU values have been carried out by means of a weighted area 
algorithm  taking into account both the input and output data on the whole NUTS 
agricultural land covered by the studied crops. Care must be taken, as frequencies 
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distributions, dispersions and spatial correlations for the same variable change when 
the data support size changes [Chiles and Delfiner, 1999].  

At last, our Random Forests have been calibrated and validated on the NUTS level. 
The quality and the accuracy of these steps are lower than by using HSMU resolution; 
the RF performance will be reduced because of the coarser information and the small 
numbers of samples (Tab 2). 

Table 2: Metamodels’ performance during the train and test steps for each 
scenario and environmental indicators. 

metamodel Train 

MSE 

Train 

%var explained 

Test 

MSE 

Test 

%var explained 

S1 

RF-N2O 

RF-Nleaching 

RF-Nsurplus 

 

3.58 

958.94 

734 

 

61.55 

67.98 

89.84 

 

3.14 

533.52 

685.53 

 

74.52 

83.4 

91.55 

S2 

RF-N2O 

RF-Nleaching 

RF-Nsurplus 

 

2.40 

900.03 

802.63 

 

67.36 

59.9 

91.58 

 

1.56 

423.3 

832.36 

 

82.2 

81.03 

91.28 

S3 

RF-N2O 

RF-Nleaching 

RF-Nsurplus 

 

1.80 

612.58 

706.1 

 

70.6 

69.02 

69.03 

 

2.38 

484.25 

675.98 

 

65.3 

74.71 

74.47 

S4 

RF-N2O 

RF-Nleaching 

RF-Nsurplus 

 

2.17 

862.1 

1040 

 

66.51 

67.12 

54.88 

 

1.6 

876.9 

796.8 

 

61.49 

52.05 

54.03 

S5 

RF-N2O 

RF-Nleaching 

RF-Nsurplus 

 

3.99 

1544 

1940 

 

61.87 

66 

14.33 

 

5.8 

1389 

3142 

 

58.15 

72.19 

27.93 

S6 

RF-N2O 

RF-Nleaching 

RF-Nsurplus 

 

6.3 

1308 

506.22 

 

30.56 

57.58 

64.37 

 

4.55 

1000 

970 

 

21.6 

58 

44.7 

S7 

RF-N2O 

RF-Nleaching 

RF-Nsurplus 

 

7.3 

2730 

426 

 

44.8 

60 

37 

 

6.5 

1021 

674 

 

58.7 

85.65 

36 
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For one specific scenario we created a Random Forest to predict each environmental 
indicator (Fig.). Once trained and tested, the forest stores all parameters to be used in 
the next predictive step, with a new input. Only this tool (predictive RF with all 
scenario parameters) is integrated into CCAT. 

The entire methodology can be resumed as follows: 

� Import data  on R computing environment:  from file.txt (CVS, header + row 
labels) to file.Rdata 

� Create a train-test subset: we randomly select 80% of (input,output) couples 
for calibration and 20% for validation 

� Create a Random Forest: we use the randomForest package in R to train and 
validate the model. All the forest parameters for a specific scenario and for 
each indicator are stored to be used in the predictive phase with a new input. 

� Sensitivity analysis: by means of forest$Importance function we are able to 
point out the importance of each variable in estimating one indicator (see 
Annex 2). This analysis is based on the mean decrease accuracy criterion 
[Breiman, 2001]. 

� Integration into  CCAT : the model, calibrated and validated, is included into 
the simulation platform. It’s able to estimate the studied indicators with a new 
input, according to a specific scenario and implementation rate. 

 

The R scripts are attached in the final appendix; they can be run both in R-GUI 
mode or batch mode. The details of calibration and validation steps are also 
attached as appendix. 

4.5 List of predictors used for metamodeling 

From the original Europe-DNDC input files (Fig 1) we screened out the less 
important predictors to estimate the selected indicators. At last we selected the 
following predictors (Tab 3 & 4) to feed the RF metamodels: 
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Table 3: Main corn - predictors’ attributes  

Predictor Mean  Standard 
deviation 

Minimum Maximum 

N Fertilizer rate (kg ha−1 y-1) 56.58 46.6 0 232.2 

N in manure (kg ha−1 y-1) 124.6 100.14 0 311.63 

N deposition (kg ha−1 y-1) 66 26.42 5.17 130.43 

N fixation (kg ha−1 y-1) 3.5 5.45 0 47.47 

N in root residue (kg ha−1 y-1) 33.8 14.69 0 77.16 

Soil Bulk density (g cm-3) 1.003 0.39 0.13 1.83 

Soil Organic Carbon in topsoil 
(mass fraction) 

0.027 0.014 0.0058 0.09 

Soil pH (in topsoil) 7.49 0.59 5.42 8.39 

Soil clay content (fraction) 0.25 0.057 0.09 0.47 

Annual precipitation (mm y-1) 791 247.9 200 1854 

Yearly Mean Maximum 
temperature (oC)  

15.2 3.05 6.58 22.80 

Yearly Mean Minimum 
temperature (oC)  

6.47 2.63 -0.45 14.28 

Table 4: Main barley - predictors’ attributes 

Predictor Mean  Standard 
deviation 

Minimum Maximum 

N Fertilizer rate (kg ha−1 y-1) 58.50 63.83 2.02 390.6 

N in manure (kg ha−1 y-1) 15.21 31.95 0 189.67 

N deposition (kg ha−1 y-1) 58.51 37.38 0.63 311.85 

N fixation (kg ha−1 y-1) 0.5 0.67 0 4.34 

N in root residue (kg ha−1 y-1) 29.89 33.64 0.29 386.41 

Soil Bulk density (g cm-3) 0.9 0.41 0.14 1.86 

Soil Organic Carbon in topsoil 
(mass fraction) 

0.028 0.023 0.0066 0.15 

Soil pH (in topsoil) 7.47 0.6 5.42 8.39 

Soil clay content (fraction) 0.26 0.054 0.09 0.55 

Annual precipitation (mm y-1) 764 246.7 256 1888 

Yearly Mean Maximum 
temperature (oC)  

15 3.28 5.14 22.76 

Yearly Mean Minimum 
temperature (oC)  

6.17 2.97 -3.9 14.87 

 

For each scenario we carried out a sensibility analysis based on the forest$importance 
function included into our RF metamodel. The evaluation of the predictors’ 
importance is based on the mean decrease accuracy criterion, which is described by 
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two indexes: the mean square error and the node impurity [Breiman, 2001]. The RF 
algorithm computes the importance of a predictor variable by looking at how much 
prediction error increase when the out-of-bag data for that variable is permuted while 
all others are left unchanged [Liaw et al, 2002]. The bigger this loss is, the most 
important the predictor is to estimate the indicator (see Annex 2). 

5 Conclusion 

The introduction of direct payments for environmental services needs the 
implementation of assessment tools to quantify the real impact of these conservative 
measures. The possible  payoffs can include, e.g.,  the soil protection from wind and 
water runoff, the air and water quality enhancement, the soil organic matter recovery, 
the conservation of natural habitats and biodiversity. The cons could be represented, 
e.g., by the additional costs for adapting to more sustainable practices and for a 
starting reduction of yield.  

The CCAT project aims to develop an integrated simulation platform for a 
quantitative assessment of Cross-Compliance measures across the EU25 agricultural 
milieu by means of environmental indicators. 

The CAPRI/Europe-DNDC modeling approach focuses on the estimation of N2O 
emission, N leaching and surplus.  

We designed a series of scenarios by varying three alternative management practices, 
namely no-till, max manure amendment and catch crop, for a corn monoculture on a 
representative HSMU EU25 subset. We pointed out that the no-tillage scenario 
reduces both the N2O emission (-20%) and N leaching (-13%), but increases the N 
surplus (+6%). Our simulations output suggested that by limiting the manure 
spreading to 170 kg/ha a year, we can have an environmental benefit in terms of N2O 
(-24%), N leaching (-14%) and N surplus (-15%) reduction. The last scenario’s 
results indicated that, when the farming system includes a rotation between a 
productive crop (corn) and a cover crop (alfalfa), these environmental benefits are 
more marked, comparing with the two previous conservative management scenarios 
(-27% for N2O, -20% for N leaching and -34% for N surplus). 

We have also designed two scenarios for barley monoculture (winter crop) namely 
no-till and max manure. In this case we have not observed significant differences 
between the reference scenario and the alternative management practices. By 
implementing no-tillage we pointed out a slight reduction in N2O emission (-4%) and 
N leaching (-2.45%), while the N surplus remained almost unchanged. The max 
manure scenario resulted in a very small decrease in N2O (-1.7%) and N surplus        
(-3%); the N leaching did not significantly change. 

The metamodels have been developed to reduce the running time and memory 
consumption of the original complex DNDC code, and to highlight the input/output 
relationships. After a preliminary comparison between some metamodeling methods, 
we selected the Random-Forest one (RF) due to its better performance and because it 
is very user-friendly and easily parallelized. Moreover it provides useful information 
about the estimate of error and the variable importance (sensibility analysis). 
Different RF have been trained and tested for each indicator at NUTS level, according 
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to the selected CC scenarios. The optimal predictive Random Forests will be 
integrated into CCAT tool to estimate the N2O emission, N leaching and surplus on 
the basis of new inputs. 
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Annex 1:  

Random Forest calibration at NUTS level                     
(DNDC vs. RF Metamodel output values) 
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Figure 11: S1 calibration scattergram. DNDC (true values) vs. metamodel values 
by the RF metamodel at NUTS level.  
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Figure 12: S2 calibration scattergram. DNDC (true values) vs. predicted values 
by RF metamodel at NUTS level. 
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Figure 13: S3 calibration scattergram. DNDC (true values) vs. predicted values 
by RF metamodel at NUTS level. 
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Figure 14: S4 calibration scattergram. DNDC (true values) vs. predicted values 
by RF metamodel at NUTS level. 
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Figure 15: S5 calibration scattergram. DNDC (true values) vs. predicted values 
by RF metamodel at NUTS level. 
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Figure 16: S6 calibration scattergram. DNDC (true values) vs. predicted values 
by RF metamodel at NUTS level. 
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Figure 17: S7 calibration scattergram. DNDC (true values) vs. predicted values 
by RF metamodel at NUTS level. 
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Annex 2:  

Sensitivity analysis – predictors’ importance assessment by 
means of RF mean decrease accuracy (node purity) 
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Figure 18: S1 predictors’ importance graphical representation (node purity 
calculated by means of RF and based on mean decrease accuracy criterion) 
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Table 5: S1 numerical values of predictors’ importance. Underlined the most 
important variables for estimating the environmental indicators. 

Predictor-S1 N surplus N leaching N2O 
emissions 

N Fertilizer rate (kg ha−1 y-1) 230446 (2) 73959 (2) 225 (3) 

N in manure (kg ha−1 y-1) 582333 (1) 46676 (4) 284 (1) 

N deposition (kg ha−1 y-1) 115668 (3) 30531 (8) 113 (5) 

N fixation (kg ha−1 y-1) 24645 (8) 44358 (5) 56 (9) 

N in root residue (kg ha−1 y-1) 80288 (4) 16186 (9) 55 (10) 

Soil Bulk density (g cm-3) 28254 (6) 13448 (12) 74 (8) 

Soil Organic Carbon in topsoil 
(mass fraction) 

9908 (12) 70477 (3) 276 (2) 

Soil pH (in topsoil) 19065 (10) 42997 (6) 107 (6) 

Soil clay content (fraction) 21942 (9) 75086 (1) 139 (4) 

Annual precipitation (mm y-1) 27968 (7) 15222 (11) 42 (11) 

Yearly Mean Maximum 
temperature (oC)  

31798 (5) 33014 (7) 80 (7) 

Yearly Mean Minimum 
temperature (oC)  

16262 (11) 15831 (10) 41 (12) 
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Figure 19: S2 predictors’ importance graphical representation (node purity 
calculated by means of RF and based on mean decrease accuracy criterion) 
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Table 6: S2 numerical values of predictors’ importance. Underlined the most 
important variables for estimating the environmental indicators. 

Predictor-S2 N surplus N leaching N2O 
emissions 

N Fertilizer rate (kg ha−1 y-1) 325557 (2) 67185 (1) 230 (2) 

N in manure (kg ha−1 y-1) 641389 (1) 41605 (2) 259 (1) 

N deposition (kg ha−1 y-1) 136924 (4) 40693 (3) 80 (4) 

N fixation (kg ha−1 y-1) 23425 (9) 32934 (5) 52 (8) 

N in root residue (kg ha−1 y-1) 140181 (3) 13870 (9) 57 (7) 

Soil Bulk density (g cm-3) 25391 (8) 9514 (12) 50 (9) 

Soil Organic Carbon in topsoil 
(mass fraction) 

9346 (12) 19538 (6) 71 (5) 

Soil pH (in topsoil) 17915 (11) 19392 (7) 69 (6) 

Soil clay content (fraction) 26040 (7) 40358 (4) 123 (3) 

Annual precipitation (mm y-1) 27255 (6) 11418 (10) 25 (11) 

Yearly Mean Maximum 
temperature (oC)  

35036 (5) 18621 (8) 48 (10) 

Yearly Mean Minimum 
temperature (oC)  

19720 (10) 10171 (11) 25 (12) 
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Figure 20: S3 predictors’ importance graphical representation (node purity 
calculated by means of RF and based on mean decrease accuracy criterion) 
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Table 7: S3 numerical values of predictors’ importance. Underlined the most 
important variables for estimating the environmental indicators. 

Predictor-S3 N surplus N leaching N2O 
emissions 

N Fertilizer rate (kg ha−1 y-1) 115972 (1) 47721 (1) 139 (3) 

N in manure (kg ha−1 y-1) 75415 (2) 30978 (4) 136 (4) 

N deposition (kg ha−1 y-1) 20454 (4) 24485 (6) 62 (6) 

N fixation (kg ha−1 y-1) 20391 (5) 23339 (7) 39 (10) 

N in root residue (kg ha−1 y-1) 46131 (3) 17232 (9) 48 (7) 

Soil Bulk density (g cm-3) 11457 (7) 8710 (10) 42 (9) 

Soil Organic Carbon in topsoil 
(mass fraction) 

7284 (11) 41429 (3) 144 (2) 

Soil pH (in topsoil) 7408 (10) 30128 (5) 82 (5) 

Soil clay content (fraction) 6442 (12) 47236 (2) 165 (1) 

Annual precipitation (mm y-1) 10957 (8) 6772 (12) 19 (12) 

Yearly Mean Maximum 
temperature (oC)  

17165 (6) 17871 (8) 46 (8) 

Yearly Mean Minimum 
temperature (oC)  

10432 (9) 8516 (11) 22 (11) 
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Figure 21: S4 predictors’ importance graphical representation (node purity 
calculated by means of RF and based on mean decrease accuracy criterion) 
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Table 8: S4 numerical values of predictors’ importance. Underlined the most 
important variables for estimating the environmental indicators. 

Predictor-S4 N surplus N leaching N2O 
emissions 

N Fertilizer rate (kg ha−1 y-1) 25051 (5)  55876 (3) 190 (1) 

N in manure (kg ha−1 y-1) 44182 (4) 113905 (1) 144 (2) 

N deposition (kg ha−1 y-1) 55804 (3) 14385 (10) 34 (11) 

N fixation (kg ha−1 y-1) 79833 (1) 13845 (11) 107 (5) 

N in root residue (kg ha−1 y-1) 68309 (2) 24401 (7) 66 (9) 

Soil Bulk density (g cm-3) 10851 (11) 28184 (5) 66 (8) 

Soil Organic Carbon in topsoil 
(mass fraction) 

9688 (12) 23609 (8) 97 (6) 

Soil pH (in topsoil) 23303 (6) 25117 (6) 71 (7) 

Soil clay content (fraction) 13060 (10) 33648 (4) 132 (3) 

Annual precipitation (mm y-1) 17846 (9) 12623 (12) 19 (12) 

Yearly Mean Maximum 
temperature (oC)  

19525 (7) 66535 (2) 129 (4) 

Yearly Mean Minimum 
temperature (oC)  

19428 (8) 23061 (9) 47 (10) 
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Figure 22: S5 predictors’ importance graphical representation (node purity 
calculated by means of RF and based on mean decrease accuracy criterion) 
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Table 9: S5 numerical values of predictors’ importance. Underlined the most 
important variables for estimating the environmental indicators. 

Predictor-S5 N surplus N leaching N2O 
emissions 

N Fertilizer rate (kg ha−1 y-1) 25206 (5)  171341 (1) 349 (1) 

N in manure (kg ha−1 y-1) 35075 (4) 58608 (3) 149 (3) 

N deposition (kg ha−1 y-1) 38990 (2) 29706 (8) 161 (2) 

N fixation (kg ha−1 y-1) 38916 (3) 13628 (11) 23(12) 

N in root residue (kg ha−1 y-1) 70210 (1) 38974 (6) 81 (8) 

Soil Bulk density (g cm-3) 11460 (7) 36229 (7) 69 (9) 

Soil Organic Carbon in topsoil 
(mass fraction) 

4335 (12) 50873 (4) 108 (5) 

Soil pH (in topsoil) 13901(6) 47808 (5) 68 (10) 

Soil clay content (fraction) 8736 (8) 21121 (10) 104 (6) 

Annual precipitation (mm y-1) 8431 (9) 11472 (12) 43 (11) 

Yearly Mean Maximum 
temperature (oC)  

7765 (10) 82952(2) 144 (4) 

Yearly Mean Minimum 
temperature (oC)  

7366 (11) 29163 (9) 81 (7) 
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Figure 23: S6 predictors’ importance graphical representation (node purity 
calculated by means of RF and based on mean decrease accuracy criterion) 
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Table 10: S6 numerical values of predictors’ importance. Underlined the most 
important variables for estimating the environmental indicators. 

Predictor-S6 N surplus N leaching N2O 
emissions 

N Fertilizer rate (kg ha−1 y-1) 31230 (2)  12362 (11) 52 (11) 

N in manure (kg ha−1 y-1) 45299 (1) 21133 (7) 93 (7) 

N deposition (kg ha−1 y-1) 12166 (6) 23699 (6) 112 (4) 

N fixation (kg ha−1 y-1) 23215 (4) 30280 (5) 49 (12) 

N in root residue (kg ha−1 y-1) 15992 (5) 18805 (8) 104 (6) 

Soil Bulk density (g cm-3) 7443 (8) 12331 (12) 108 (5) 

Soil Organic Carbon in topsoil 
(mass fraction) 

3195 (12) 109416 (1) 205 (1) 

Soil pH (in topsoil) 25051 (3) 43629 (4) 54 (10) 

Soil clay content (fraction) 4445 (11) 18493 (9) 74 (8) 

Annual precipitation (mm y-1) 8416 (7) 15856 (10) 56.44 (9) 

Yearly Mean Maximum 
temperature (oC)  

6008 (9) 75774 (2) 187 (2) 

Yearly Mean Minimum 
temperature (oC)  

5709 (10) 44914 (3) 141 (3) 
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Figure 24: S7 predictors’ importance graphical representation (node purity 
calculated by means of RF and based on mean decrease accuracy criterion) 
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Table 11: S7 numerical values of predictors’ importance. Underlined the most 
important variables for estimating the environmental indicators. 

Predictor-S7 N surplus N leaching N2O 
emissions 

N Fertilizer rate (kg ha−1 y-1) 6850 (5)  16635 (11) 40 (12) 

N in manure (kg ha−1 y-1) 4639 (10) 13792 (12) 89 (9) 

N deposition (kg ha−1 y-1) 12689 (2) 182678 (1) 182 (3) 

N fixation (kg ha−1 y-1) 12822 (1) 19612 (10) 70 (10) 

N in root residue (kg ha−1 y-1) 10881 (3) 21445 (9) 104 (6) 

Soil Bulk density (g cm-3) 4939 (8) 53104 (6) 102 (7) 

Soil Organic Carbon in topsoil 
(mass fraction) 

4833 (9) 180120 (2) 329 (1) 

Soil pH (in topsoil) 3590 (12) 53215 (5) 100 (8) 

Soil clay content (fraction) 4228 (11) 3306 (7) 140 (6) 

Annual precipitation (mm y-1) 6549 (6) 29359 (8) 167 (6) 

Yearly Mean Maximum 
temperature (oC)  

6885 (4) 102729(4) 179 (4) 

Yearly Mean Minimum 
temperature (oC)  

5398 (7) 121939 (3) 222 (2) 

 


