

Designing the bio-polyesters of tomorrow through ring-opening polymerization

Patrick Farquet I Sulzer Chemtech Ltd

10th edition of our Circular Biobased Products Symposium

Bio-polyesters

High carbon and oxygen yields from first and second generations feedstocks

Polyester: The ester linkage

Bio-polyesters are excellent carbon and oxygen storage materials from biomass feestocks

2

PLA – "Shining star" of bio-based polyesters

PLA has the best yield from raw materials to polymers compared to other bio-plastics

Global bio-polymer demand is surging

Growth mainly driven by bio-polyesters

Why Bio-polyesters

Compared to other biopolymers, biopolymers:

- 1. Often a better CO₂ footprint due to their ability to keep carbon and oxygen in the polymer backbone
- 2. Can have various end-of-life options (i.e. composability, biodegradability), recycling or incineration.

Biopolymer Production Capacities

(by material type)

Global production capacities of bioplastics 2026

Global production capacities of bioplastics 2021 (by material type)

© European Bioplastics

SULZER

. . .

69.6%

PLA : Sulzer'main involvement in bio-polyesters

Market leader for technology licensing from lactide to PLA

Sulzer PLA (Poly lactic acid) technology deployment

Our long-standing renewable carbon success story

SULZER

Biomaterials (China)

Sulzer Chemtech – Division of the Sulzer group

We are committed to sustainable innovation

- Mass transfer
- Thermal separation
- Mixing and reaction
- Polymerization and foaming
- Hydrotreating

- Recycling
- CO₂ capture and utilization
- Biofuels / bio-chemicals
- Bio-polymers and biomonomers

Bio-polymers/monomers Focused on bio-polyesters

- Novel technologies for sustainable biopolyester production
- Bioplastic applications
 development
- Bio-foaming technology

Where we contribute to a sustainable plastics economy

What's next after PLA ?

Developing a portfolio of novel bio-polyesters using our technology platforms

Swift scale-up of novel bio-polyesters

We bring technologies from lab scale to industrialization

Capabilities from lab research to pilot engineering and commercial plant design in Switzerland

Overall summary of bio-(co)polymers properties

*All values were normalized based on their actual data to a maximum score of 10

Conclusions and Outlook

Following the strong PLA market growth, we will continue to offer tailored and licensing solutions:

15

Thank you!

SULZER

Patrick Farquet

Head Renewables and Bio-based Applications

Sulzer Chemtech Ltd Neuwiesenstrasse 15 8401 Winterthur Switzerland

Reach out

biobased@sulzer.com

16

Disclaimer

This presentation may contain forward-looking statements, including but not limited to, projections of financial developments, market activities or future performance of products and solutions, containing risks and uncertainties.

These forward-looking statements are subject to change based on known or unknown risks and various other factors, which could cause the actual results or performance to differ materially from the statements made herein.

Copyright © Sulzer Ltd 2022