Versatile polymers from microbes

Circular and Biobased Products Symposium

June 22nd, 2023, Frits de Wolf, Wageningen Food & Biobased Research

Microbial (bio)polymer production

Microbial (bio)polymer production

Full-mcl-PHA: 100% C6-C14 monomer units

Well known: scl-PHA (PHB/PHBV)

More special: mcl-PHA

Feedstock-dependent full-mcl-PHA synthesis

Full-mcl-PHA isolation from bacterial cells

By solvent extraction: By water-borne processing: water-washed, wet cells (no drying water-washed, wet cells énergy) enzyme/alkaline/heat/surfactant ethanol wash (lipid removal) treatment extraction, e.g. by ethyl acetate washing full-mcl-PHA particles \mathbf{V} solid/liquid separation precipitation by pH shift evaporation & solvent recycling drying

Full-mcl-PHA properties tailored by feedstock

from VFA, ethanol, glycerol, or glucose: T_g -50 °C **stiff** at room temperature, crystallinity ~13% T_m +60 °C from tall oil fatty acid or linseed oil: T_g -60 °C **fluid** at room temperature T_m & crystallinity not detectable

Full-mcl-PHA properties modified post-synthesis

Versatile full-mcl-PHA post synthesis processing

Versatile full-mcl-PHA post synthesis processing

polymeric mcl-PHA from green solvent / latex

- Toxic to cells used for production
- Low titers / continuous removal required
- Isolation is difficult: surfactants bind to interfaces, protein, cells, etc.

Microbial (bio)polymer production

Protein polymer materials are not new, but still in development

- Silk (from silk worms): ~ 4000 BC
- Collagen / leather / glue / gelatin: probably even older
- Casein (for glue, buttons, ties: 1st half of 20th century)
- End 20th century present: protein polymers produced by microbes
 - Spider silk: for example Spiber (Japan) / the North Face; Amsilk (Germany) / Adidas, Bold Threads (USA)
 - Collagen: for example Modern Meadow (USA)
 - Various protein polymers for biomedicine/cosmetics/...

Modular protein polymers from Wageningen FBR

Example: tri-modular designer protein polymer

pH-responsive silk: soluble unstructured $\sqrt{1}$ crystal hydrophilic hydrophilic soluble soluble unstructured unstructured

Example: tri-modular designer protein polymer

Modular protein polymers: examples of modules developed at WFBR

heterodimer-forming modules

16

Microbial protein polymers: 'unlimited' versatility

- Replacement of more traditional materials: silk, collagen, etc.
- Food colloids,
- Edible coatings
- Personal care: responsive / bioactive / selectively binding / antimicrobial gels
- Biomedicine:
 - cell / tissue culture scaffolds
 - Slow release agents
 - Protective / anti-microbial / anti-freeze materials
 -

Different polymers: different 'worlds'

- PE, PP, etc. (non-food): ≤2 €/kg, many million tons/yr
- Animal gelatin (food & non-food): 3-30 €/kg; ~600,000 tons/yr
- Animal collagen (food & non-food): 20-50 €/kg; ~300,000 tons/y
- Silk worm silk (non-food): 30-40 €/kg; ~150,000 tons/yr
- Scl-PHA (non-food): 10-20 €/kg; as yet ~10,000-100,000 tons/yr
- Full-mcl-PHA (non-food): ~20 €/kg?; as yet low volume
- Microbial designer protein polymers (exactly defined):
 - Silk, gelatin, etc.: (biomedicine, cosmetics, (specialty) food ingredients, materials?): 50(?)-500 €/kg; as yet low volume
 - Special functional designer protein polymers (biomedicine): 500-5000 €/kg; low volume

Thank you for your attention

Thank you for your attention

Versatile full-mcl-PHA post synthesis processing

Full-mcl-PHA composition* tailored by feedstock

Substrate	C _{6:0}	C _{8:0}	C _{8:1}	C _{10:0}	C _{10:1}	C _{12:0}	C _{12:1}	C _{12:2}	C _{14:0}	C _{14:1}	C _{14:2}	C _{14:3}	C _{16:3}
Glucose	tr ^b	6.9	_	74.3	_	7.7	8.8	-	tr ^b	1.6	-	_	-
Fructose	0.5	12.6	-	70.8	-	5.7	8.5	-	0.3	1.6	-	-	-
Decanoic acid	5.3	52.3	-	42.3	-	-	-	-	-	-	-	-	-
Glycerol	1.7	21.4	_	63.6	_	3.8	8.6	-	0.1	0.8	-	_	_
Coconut fatty acids	3.8	38.1	-	37.8	_	18.1	1.0	-	1.1	_	_	-	_

*of *Pseudomonas putida*

From Huijberts et al. (1992) Appl. Eviron. Microbiol. 58 (2) 536-44

Full-mcl-PHA composition* tailored by feedstock

Substrate	C _{6:0}	C _{8:0}	C _{8:1}	C _{10:0}	C _{10:1}	C _{12:0}	C _{12:1}	C _{12:2}	C _{14:0}	C _{14:1}	C _{14:2}	C _{14:3}	C _{16:3}
Glucose	tr ^b	6.9	-	74.3	_	7.7	8.8	~	tr ^b	1.6		_	~
Fructose	0.5	12.6	-	70.8	-	5.7	8.5	~	0.3	1.6	-	-	-
Decanoic acid	5.3	52.3	-	42.3	–	-	-	-	-	-	-	-	
Linoleic acid	5.6	38.9		22.7	-	-	15.9	-	-	_	16.9	-	-
Glycerol	1.7	21.4	-	63.6	-	3.8	8.6	-	0.1	0.8	-	-	-
Coconut fatty acids	3.8	38.1	-	37.8	_	18.1	1.0	-	1.1	-	-	-	-
Oleic acid	4.4	33.5	-	32.2	-	14.4	tr ^b	-	-	15.5	tr ^b	-	-
Tall oil fatty acids	4.1	22.9	5.2	26.6	-	5.9	11.4	-	-	5.5	17.7	-	-
Linseed oil	2.5	11.6	7.9	13.3	7.8	5.6	3.5	9.1	1.1	5.0	6.8	19.1	6.7
fatty acids													

*from *Pseudomonas putida*: % fatty acid

From Huijberts et al. (1992) Appl. Eviron. Microbiol. 58 (2) 536-44

Full-mcl-PHA composition* tailored by feedstock

Substrate	% unsaturated monomers						
Glucose	10.4						
Fructose	10.1						
Decanoic acid	0						
Linoleic acid	32.8						
Glycerol	9.4						
Coconut fatty a	acids 1.0						
Oleic acid	15.5						
Tall oil fatty ac	ids 39.8						
Linseed oil	65.9						
fatty acids							

*from Pseudomonas putida: % fatty acid From Huijberts et al. (1992) Appl. Eviron. Microbiol. 58 (2) 536-44

Protein polymer materials: collagen-silk-collagen tri-modular polymers

fluid:

Choice by design:

- fluid when in acid
- gel at pH >5-6 —
- gel when in acid
- fluid at pH >5-6

osteoblast cells cultured in gel with additional cell-binding module:

Proteins are monodisperse, sequential amino acid polymers (poly-amide), encoded by DNA

Modular protein polymers (WFBR, PPTI pioneers)

Protein polymer materials: tri-modular gelatin

Protein polymer materials: tri-modular gelatin

- Suitable for slow release (hrs – weeks)
- Option: built-in activity (anti-microbial, antifreeze, specific binding)

Self-healing

Tailored melting temperature

